The dynamic changes in lipids during early embryonic development in mammals have not yet been comprehensively investigated.In a recent paper published in Nature Cell Biology,Zhang et al.reported the dynamic lipid land...The dynamic changes in lipids during early embryonic development in mammals have not yet been comprehensively investigated.In a recent paper published in Nature Cell Biology,Zhang et al.reported the dynamic lipid landscapes during preimplantation embryonic development in mice and humans.They highlight the crucial role of lipid unsaturation in regulating embryogenesis.展开更多
A series of amphiphilic copolymers containing poly(vinyl chloride-r-acrylic acid) (P(VC-r-AA)) was synthesized and used to prepare membranes via a non-solvent induced phase separation method. The prepared membra...A series of amphiphilic copolymers containing poly(vinyl chloride-r-acrylic acid) (P(VC-r-AA)) was synthesized and used to prepare membranes via a non-solvent induced phase separation method. The prepared membranes were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and water contact angle and zeta potential measurements. The copolymer P(VC-r-AA) chains did not dissolved in a coagulation bath, indicating that the AA segments were completely retained within the membrane. Enriching degree of AA segments in surface layer was 2 for copolymer membrane. In addition, the introduction of AA segments made the membrane electronegative and hydrophilic so that the membrane was sensitive to the solution pH. The fouling resistance, adsorption of Cu(II), Cr(III) and Ce(IV) ions and the desorption properties of the membranes were also determined. The copolymer membranes exhibited good antifouling performance with a fouling reversibility of 92%. The membranes also had good adsorption capacities for Cu(II), Cr(III) and Ce(IV) ions. The optimal pH for Cu(II) adsorption was 6 and the copolymer membrane has potential applications for low concentration Cu(II) removal.展开更多
The aim of this study was to optimize electrofusion conditions for generating porcine tet- raploid (4n) embryos and produce tetraploid/diploid (4n/2n) chimeric embryos. Different electric field intensities were te...The aim of this study was to optimize electrofusion conditions for generating porcine tet- raploid (4n) embryos and produce tetraploid/diploid (4n/2n) chimeric embryos. Different electric field intensities were tested and 2 direct current (DC) pulses of 0.9 kV/em for 30 p.s was selected as the optimum condition for electrofusion of 2-cell embryos to produce 4n embryos. The fusion rate of 2-cell embryos and the development rate to blastocyst of presumably 4n embryos, reached 85.4% and 28.5%, respectively. 68.18% of the fused embryos were found to be 4n as demonstrated by fluorescent in situ hybridization (FISH). Although the number of blastomeres in 4n blastocysts was significantly lower than in 2n blastocysts (P 〈 0.05), there was no significant difference in developmental rates of blastocysts between 2n and 4n embryos (P 〉 0.05), suggesting that the blas- tocyst forming capacity in 4n embryos is similar to those in 2n embryos. Moreover, 4n/2n chimeric embryos were obtained by aggregation of 4n and 2n embryos. We found that the developmental rate and cell number of blastocysts of 4-cell (4n)/4-cell (2n) chimeric embryos were significantly higher than those of 2-cell (4n)/4-cell (2n), 4-cell (4n)/8-cell (2n), 4-cell (4n)/2-cell (2n) chimeric embryos (P 〈 0.05). Consistent with mouse chimeras, the majority of 4n cells contribute to the trophectoderm (TE), while the 2n cells are mainly present in the inner cell mass (ICM) of porcine 4n/2n chimeric embryos. Our study established a feasible and efficient approach to produce porcine 4n embryos and 4n/2n chimeric embryos.展开更多
文摘The dynamic changes in lipids during early embryonic development in mammals have not yet been comprehensively investigated.In a recent paper published in Nature Cell Biology,Zhang et al.reported the dynamic lipid landscapes during preimplantation embryonic development in mice and humans.They highlight the crucial role of lipid unsaturation in regulating embryogenesis.
基金This research was supported by the National High Technology Research and Development Program of China (Granted No. 2012AA03A602 ) , the National Basic Research Program of China (Granted No. 2009CB623402) and the National Natural Science Foundation of China (Grant No. 20974094).
文摘A series of amphiphilic copolymers containing poly(vinyl chloride-r-acrylic acid) (P(VC-r-AA)) was synthesized and used to prepare membranes via a non-solvent induced phase separation method. The prepared membranes were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and water contact angle and zeta potential measurements. The copolymer P(VC-r-AA) chains did not dissolved in a coagulation bath, indicating that the AA segments were completely retained within the membrane. Enriching degree of AA segments in surface layer was 2 for copolymer membrane. In addition, the introduction of AA segments made the membrane electronegative and hydrophilic so that the membrane was sensitive to the solution pH. The fouling resistance, adsorption of Cu(II), Cr(III) and Ce(IV) ions and the desorption properties of the membranes were also determined. The copolymer membranes exhibited good antifouling performance with a fouling reversibility of 92%. The membranes also had good adsorption capacities for Cu(II), Cr(III) and Ce(IV) ions. The optimal pH for Cu(II) adsorption was 6 and the copolymer membrane has potential applications for low concentration Cu(II) removal.
基金supported by grants from the National Basic Research Program of China(973 ProgramGrant No.2009CB941000 and 2011CB944202)the Fund for Outstanding Young Scholars in Heilongjiang Province(Grant No.JC200905)
文摘The aim of this study was to optimize electrofusion conditions for generating porcine tet- raploid (4n) embryos and produce tetraploid/diploid (4n/2n) chimeric embryos. Different electric field intensities were tested and 2 direct current (DC) pulses of 0.9 kV/em for 30 p.s was selected as the optimum condition for electrofusion of 2-cell embryos to produce 4n embryos. The fusion rate of 2-cell embryos and the development rate to blastocyst of presumably 4n embryos, reached 85.4% and 28.5%, respectively. 68.18% of the fused embryos were found to be 4n as demonstrated by fluorescent in situ hybridization (FISH). Although the number of blastomeres in 4n blastocysts was significantly lower than in 2n blastocysts (P 〈 0.05), there was no significant difference in developmental rates of blastocysts between 2n and 4n embryos (P 〉 0.05), suggesting that the blas- tocyst forming capacity in 4n embryos is similar to those in 2n embryos. Moreover, 4n/2n chimeric embryos were obtained by aggregation of 4n and 2n embryos. We found that the developmental rate and cell number of blastocysts of 4-cell (4n)/4-cell (2n) chimeric embryos were significantly higher than those of 2-cell (4n)/4-cell (2n), 4-cell (4n)/8-cell (2n), 4-cell (4n)/2-cell (2n) chimeric embryos (P 〈 0.05). Consistent with mouse chimeras, the majority of 4n cells contribute to the trophectoderm (TE), while the 2n cells are mainly present in the inner cell mass (ICM) of porcine 4n/2n chimeric embryos. Our study established a feasible and efficient approach to produce porcine 4n embryos and 4n/2n chimeric embryos.