Titanium(Ti) and its alloys are used extensively in orthopedic implants because of their excellent biocompatibility,mechanical properties and corrosion resistance. However,titanium-based implant materials face many se...Titanium(Ti) and its alloys are used extensively in orthopedic implants because of their excellent biocompatibility,mechanical properties and corrosion resistance. However,titanium-based implant materials face many severe complications,such as implant loosening due to poor osseointegration and bacterial infections,which may lead to implant failure. Hence,preparing a biomaterial surface,which enhances the interactions with host cells and inhibits bacterial adhesion,may be an optimal strategy to reduce the incidence of implant failure. This study aims to improve osseointegration and confer antibacterial properties on Ti through a combination of two surface modifications including nanostructuring generated by acid etching and ultraviolet(UV) light treatment.Our results showed that without UV treatment,the acid etching treatment of Ti surface was effective at both improving the adhesion of bone mesenchymal stem cells(BMSCs) and increasing bacterial adhesion. A further UV treatment of the acid-etched surface however,not only significantly improved the cell adhesion but also inhibited bacterial adhesion. The acid-etched nanostructured titanium with UV treatment also showed a significant enhancement on cell proliferation,alkaline phosphatase(ALP) activity and mineralization. These results suggest that such nanostructured materials with UV treatment can be expected to have a good potential in orthopedic applications.展开更多
基金supported by the National Key Basic Research Program of China (Grant No.2012CB619106)the National Natural Science Foundation of China (Grant No.81271957)+1 种基金the Military Medical Research "12th Five-Year Plan" General Program of China (Grant No.cws11c268)Guangdong Provincial Science and Technology Project,China (Grant No.2012A030400064)
文摘Titanium(Ti) and its alloys are used extensively in orthopedic implants because of their excellent biocompatibility,mechanical properties and corrosion resistance. However,titanium-based implant materials face many severe complications,such as implant loosening due to poor osseointegration and bacterial infections,which may lead to implant failure. Hence,preparing a biomaterial surface,which enhances the interactions with host cells and inhibits bacterial adhesion,may be an optimal strategy to reduce the incidence of implant failure. This study aims to improve osseointegration and confer antibacterial properties on Ti through a combination of two surface modifications including nanostructuring generated by acid etching and ultraviolet(UV) light treatment.Our results showed that without UV treatment,the acid etching treatment of Ti surface was effective at both improving the adhesion of bone mesenchymal stem cells(BMSCs) and increasing bacterial adhesion. A further UV treatment of the acid-etched surface however,not only significantly improved the cell adhesion but also inhibited bacterial adhesion. The acid-etched nanostructured titanium with UV treatment also showed a significant enhancement on cell proliferation,alkaline phosphatase(ALP) activity and mineralization. These results suggest that such nanostructured materials with UV treatment can be expected to have a good potential in orthopedic applications.