In the active layer of organic solar cells(OSCs),the lifetime of triplet excitons is one of the decisive factors in the diffusion length and therefore has important impact on the power conversion efficiency of the dev...In the active layer of organic solar cells(OSCs),the lifetime of triplet excitons is one of the decisive factors in the diffusion length and therefore has important impact on the power conversion efficiency of the devices.Herein,we have investigated singlet excited state relaxation dynamics and their triplet exciton lifetimes of two thiophene-coupled perylene diimides(PDI)dyads(2 PDI-Th and fused-2 PDI-Th),in order to provide a unique explanation in depth on their different performances in OSC devices.From the transient absorption(TA)spectra,the singlet excitons of 2 PDI-Th form excimers in the time scale of 1.5 ps.Then the excimers go into the triplet state via intersystem crossing(ISC).In fused-2 PDI-Th,triplet excitons are generated directly from the singlet excited excitons via the efficient ISC.Density functional theory(DFT)calculations further support the formation of excimers.DFT results indicate that 2 PDI-Th exhibits an H-typed molecular configuration which is beneficial to form the excimers,while fused-2 PDITh gives a twisted X-shaped configuration in the optimized ground and excited state.In steady-state emission spectra,2 PDI-Th shows abroad and featureless spectral characteristics of the excimers with a decay time of 840 ps,which is much shorter than those of PDI(5.5 ns)and fused-2 PDI-Th(3.3 ns).The triplet lifetime(67 ms)of fused-2 PDI-Th is factor of 3 longer than that of 2 PDI-Th(22 ms).These results demonstrate that ring-fused structure is an efficient strategy to eliminate excimer formation and prolong the lifetime of triplet excitons,which provides a new insight for design of optoelectronic molecules for high efficiency organic solar cells.展开更多
基金the National Natural Science Foundation of China(Nos.21421005,21576040,21776037 and 21875027)the Fundamental Research Funds for the Central Universities(No.DUT19LK05)Supercomputing Center of Dalian University of Technology。
文摘In the active layer of organic solar cells(OSCs),the lifetime of triplet excitons is one of the decisive factors in the diffusion length and therefore has important impact on the power conversion efficiency of the devices.Herein,we have investigated singlet excited state relaxation dynamics and their triplet exciton lifetimes of two thiophene-coupled perylene diimides(PDI)dyads(2 PDI-Th and fused-2 PDI-Th),in order to provide a unique explanation in depth on their different performances in OSC devices.From the transient absorption(TA)spectra,the singlet excitons of 2 PDI-Th form excimers in the time scale of 1.5 ps.Then the excimers go into the triplet state via intersystem crossing(ISC).In fused-2 PDI-Th,triplet excitons are generated directly from the singlet excited excitons via the efficient ISC.Density functional theory(DFT)calculations further support the formation of excimers.DFT results indicate that 2 PDI-Th exhibits an H-typed molecular configuration which is beneficial to form the excimers,while fused-2 PDITh gives a twisted X-shaped configuration in the optimized ground and excited state.In steady-state emission spectra,2 PDI-Th shows abroad and featureless spectral characteristics of the excimers with a decay time of 840 ps,which is much shorter than those of PDI(5.5 ns)and fused-2 PDI-Th(3.3 ns).The triplet lifetime(67 ms)of fused-2 PDI-Th is factor of 3 longer than that of 2 PDI-Th(22 ms).These results demonstrate that ring-fused structure is an efficient strategy to eliminate excimer formation and prolong the lifetime of triplet excitons,which provides a new insight for design of optoelectronic molecules for high efficiency organic solar cells.