期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Precisely engineering a dual-drug cooperative nanoassembly for proteasome inhibition-potentiated photodynamic therapy 被引量:3
1
作者 Fujun Yang qingyu ji +10 位作者 Rui Liao Shumeng Li Yuequan Wang Xuanbo Zhang Shenwu Zhang Haotian Zhang Qiming Kan jin Sun Zhonggui He Bingjun Sun Cong Luo 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第4期1927-1932,共6页
Photodynamic therapy(PDT) has been widely investigated for cancer therapy. The intracellular accumulation of reactive oxygen species(ROS)-damaged protein facilitates tumor cell apoptosis. However, there is growing evi... Photodynamic therapy(PDT) has been widely investigated for cancer therapy. The intracellular accumulation of reactive oxygen species(ROS)-damaged protein facilitates tumor cell apoptosis. However, there is growing evidence that the ubiquitin-proteasome pathway(UPP) significantly impedes PDT by preventing the enrichment of ROS-damaged proteins in tumor cells. To tackle this challenge, we report a facile dual-drug nanoassembly based on the discovery of an interesting co-assembly of bortezomib(BTZ, a proteasome inhibitor) and pyropheophorbide a(PPa) for proteasome inhibition-mediated PDT sensitization.The precisely engineered nanoassembly with the optimal dose ratio of BTZ and PPa demonstrates multiple advantages, including simple fabrication, high drug co-loading efficiency, flexible dose adjustment,good colloidal stability, long systemic circulation, favorable tumor-specific accumulation, as well as significant enrichment of ROS-damaged proteins in tumor cells. As a result, the cooperative nanoassembly exhibits potent synergistic antitumor activity in vivo. This study provides a novel dual-drug engineering modality for multimodal cancer treatment. 展开更多
关键词 BORTEZOMIB Pyropheophorbide a Precisely cooperative nanoassembly Proteasome inhibition Photodynamic therapy Multimodal cancer therapy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部