期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Highly coordinated Pd overlayers on nanoporous gold for efficient formic acid electro-oxidation 被引量:2
1
作者 qinqin sang Shuai Yin +3 位作者 Feng Liu Huiming Yin Jia He Yi Ding 《Nano Research》 SCIE EI CSCD 2021年第10期3502-3508,共7页
Design and fabrication of highly efficient and stable electrocatalysts remain key challenges in green energy technologies such as low-temperature direct liquid fuel cells.Based on in-depth theoretical calculations,her... Design and fabrication of highly efficient and stable electrocatalysts remain key challenges in green energy technologies such as low-temperature direct liquid fuel cells.Based on in-depth theoretical calculations,here we demonstrate that surface Pd atoms with high coordination numbers(HCNs)can effectively modulate their adsorption energies for CO and OH,and thus achieve very high performance for formic acid electro-oxidation reaction(FAOR).Based on epitaxial coating Pd atomic layers onto nanoporous gold(NPG)thin membranes and a slight further decoration of Au clusters on top,the resulted core-shell structured NPG-Pd-Au electrocatalyst can demonstrate Pd intrinsic and mass activities of 8.62 mA·cm^(-2)and 27.25 A·mg^(-1)respectively at the peak potential around 0.33 V versus saturated calomel electrode toward FAOR,which are far better than those of commercial Pd/C catalysts(1.09 mA·cm^(-2)and 0.32 A·mg^(-1))tested under the same conditions.Moreover,the membrane electrode assemblies based on these low precious metal loading electrodes can achieve an anode Pd power efficiency over 10 W·mg^(-1)in a direct formic acid fuel cell,which is two orders of magnitude higher than that of the commercial Pd/C.These results provide new inspirations for the development of revolutionary electrodes for energy technologies in a rational manner. 展开更多
关键词 PD nanoporous gold high coordination number formic acid oxidation direct formic acid fuel cell
原文传递
Ultrathin nanoporous metal electrodes facilitate high proton conduction for low-Pt PEMFCs 被引量:2
2
作者 Shuai Shi Xianglong Wen +7 位作者 qinqin sang Shuai Yin Kaili Wang Jian Zhang Min Hu Huiming Yin Jia He Yi Ding 《Nano Research》 SCIE EI CSCD 2021年第8期2681-2688,共8页
Design of catalyst layers(CLs)with high proton conductivity in membrane electrode assemblies(MEAs)is an important issue for proton exchange membrane fuel cells(PEMFCs).Herein,an ultrathin catalyst layer was constructe... Design of catalyst layers(CLs)with high proton conductivity in membrane electrode assemblies(MEAs)is an important issue for proton exchange membrane fuel cells(PEMFCs).Herein,an ultrathin catalyst layer was constructed based on Pt-decorated nanoporous gold(NPG-Pt)with sub-Debye-length thickness for proton transfer.In the absence of ionomer incorporation in the CLs,these integrated carbon-free electrodes can deliver maximum mass-specific power density of 198.21 and 25.91 kW·gPt^(-1) when serving individually as the anode and cathode,at a Pt loading of 5.6 and 22.0 pg·cm^(-2),respectively,comparable to the best reported nano-catalysts for PEMFCs.In-depth quantitative experimental measurements and finite-element analyses indicate that improved proton conduction plays a critical role in activation,ohmic and mass transfer polarizations. 展开更多
关键词 nanoporous metal electrode proton exchange membrane fuel cell(PEMFC) ultrathin catalyst layer proton conduction DEALLOYING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部