Discrimination of dislocations is critical to the statistics of dislocation densities in 4H silicon carbide(4H-SiC),which are routinely used to evaluate the quality of 4H-SiC single crystals and homoepitaxial layers.I...Discrimination of dislocations is critical to the statistics of dislocation densities in 4H silicon carbide(4H-SiC),which are routinely used to evaluate the quality of 4H-SiC single crystals and homoepitaxial layers.In this work,we show that the inclination angles of the etch pits of molten-alkali etched 4H-SiC can be adopted to discriminate threading screw dislocations(TSDs),threading edge dislocations(TEDs)and basal plane dislocations(BPDs)in 4H-SiC.In n-type 4H-SiC,the inclination angles of the etch pits of TSDs,TEDs and BPDs in molten-alkali etched 4H-SiC are in the ranges of 27°−35°,8°−15°and 2°−4°,respectively.In semi-insulating 4H-SiC,the inclination angles of the etch pits of TSDs and TEDs are in the ranges of 31°−34°and 21°−24°,respectively.The inclination angles of dislocation-related etch pits are independent of the etching duration,which facilitates the discrimination and statistic of dislocations in 4H-SiC.More significantly,the inclination angle of a threading mixed dislocations(TMDs)is found to consist of characteristic angles of both TEDs and TSDs.This enables to distinguish TMDs from TSDs in 4H-SiC.展开更多
Introducing and stabilizing twins in aluminum is a challenge for metals research due to their high formation energy.Employing first-principles calculations,we investigated the twin boundary segregation of alloying ele...Introducing and stabilizing twins in aluminum is a challenge for metals research due to their high formation energy.Employing first-principles calculations,we investigated the twin boundary segregation of alloying elements and their impact on the twin boundary energy in aluminum.Alloying elements with small solubilities but strong interaction with twin boundary would significantly reduce twin boundary energies in aluminum at low temperatures.With increasing temperature,their segregation near twin boundary weakens,leading to their influence on twin boundary energies reduced.Some elements with large solubilities may greatly reduce the twin energies not only at low temperatures but also at high temperatures.Based on careful analysis of charge density and atomic radius,it has been found that chemical difference has little influence on twin boundary energy whereas the atomic size effect plays a leading role in causing the change of twin boundary energy.展开更多
基金supported by“Pioneer”and“Leading Goose”R&D Program of Zhejiang(Grant No.2022C01021)National Key Research and Development Program of China(Grant Nos.2018YFB2200101)+3 种基金Natural Science Foundation of China(Grant Nos.61774133)Fundamental Research Funds for the Central Universities(Grant No.2018XZZX003-02)Natural Science Foundation of China for Innovative Research Groups(Grant No.61721005)Zhejiang University Education Foundation Global Partnership Fund.
文摘Discrimination of dislocations is critical to the statistics of dislocation densities in 4H silicon carbide(4H-SiC),which are routinely used to evaluate the quality of 4H-SiC single crystals and homoepitaxial layers.In this work,we show that the inclination angles of the etch pits of molten-alkali etched 4H-SiC can be adopted to discriminate threading screw dislocations(TSDs),threading edge dislocations(TEDs)and basal plane dislocations(BPDs)in 4H-SiC.In n-type 4H-SiC,the inclination angles of the etch pits of TSDs,TEDs and BPDs in molten-alkali etched 4H-SiC are in the ranges of 27°−35°,8°−15°and 2°−4°,respectively.In semi-insulating 4H-SiC,the inclination angles of the etch pits of TSDs and TEDs are in the ranges of 31°−34°and 21°−24°,respectively.The inclination angles of dislocation-related etch pits are independent of the etching duration,which facilitates the discrimination and statistic of dislocations in 4H-SiC.More significantly,the inclination angle of a threading mixed dislocations(TMDs)is found to consist of characteristic angles of both TEDs and TSDs.This enables to distinguish TMDs from TSDs in 4H-SiC.
基金supported financially by the National Natural Science Foundation of China (Nos.51701243,11427806,51471067 and 51371081)the Hunan Provincial Natural Science Foundation of China (No.2019JJ40544)+3 种基金the Specialized Research Found for the Doctoral Program of Higher Education of China (No. 20120161110036)the National Basic Research (973) Program of China (No.2009CB623704)the PhD Research Startup Foundation of Central South University of Forestry and Technology (No. 2017YJ020)the supercomputer TH-1A installed at Hunan University
文摘Introducing and stabilizing twins in aluminum is a challenge for metals research due to their high formation energy.Employing first-principles calculations,we investigated the twin boundary segregation of alloying elements and their impact on the twin boundary energy in aluminum.Alloying elements with small solubilities but strong interaction with twin boundary would significantly reduce twin boundary energies in aluminum at low temperatures.With increasing temperature,their segregation near twin boundary weakens,leading to their influence on twin boundary energies reduced.Some elements with large solubilities may greatly reduce the twin energies not only at low temperatures but also at high temperatures.Based on careful analysis of charge density and atomic radius,it has been found that chemical difference has little influence on twin boundary energy whereas the atomic size effect plays a leading role in causing the change of twin boundary energy.