期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
钠离子电池用高性能锑基负极材料的调控策略研究进展 被引量:8
1
作者 李莹 来雪琦 +2 位作者 曲津朋 赖勤志 伊廷锋 《物理化学学报》 SCIE CAS CSCD 北大核心 2022年第11期45-71,共27页
锑(Sb)具有高的理论比容量、较小的电极极化、合适的Na^(+)脱嵌电位、价格低廉以及环境友好的优势,而成为一种具有较大应用前景的钠离子电池负极材料。但是,Sb基负极材料的一个重要挑战是在循环过程中高比容量伴随着大的体积变化,进而... 锑(Sb)具有高的理论比容量、较小的电极极化、合适的Na^(+)脱嵌电位、价格低廉以及环境友好的优势,而成为一种具有较大应用前景的钠离子电池负极材料。但是,Sb基负极材料的一个重要挑战是在循环过程中高比容量伴随着大的体积变化,进而导致活性材料粉化,并从集流体上脱落,这大大限制了其在钠离子电池领域的大规模应用。因此,如何解决Sb基负极材料充放电过程中体积膨胀问题对于高性能的钠离子电池设计是至关重要的。本文详细综述和讨论了Sb基材料的结构-性能关系及其在钠离子电池中的应用,详细介绍了钠离子电池Sb基负极材料在氧化还原反应机理、形貌设计、结构-性能关系等方面的最新研究进展。本综述的主要目的是探讨影响Sb基负极材料性能的决定因素,从而提出有前途的改性策略,以提高其可逆容量和循环稳定性。最后,对Sb基钠离子电池负极材料的未来发展、面临的挑战和前景进行了展望。本文可为Sb负极材料的构建和优化提供具体的观点,阐明了Sb基负极材料未来的发展方向,从而促进钠离子电池的快速发展和实际应用。 展开更多
关键词 钠离子电池 反应机理 SB 负极材料 优化策略
下载PDF
Nanostructured Mn-based oxides as high-performance cathodes for next generation Li-ion batteries 被引量:4
2
作者 Guodong Hao qinzhi lai Hongzhang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期547-571,I0012,共26页
Mn-based oxides have been regarded as a promising family of cathode materials for high-performance lithium-ion batteries,but the practical applications have been limited because of severe capacity deterioration(such a... Mn-based oxides have been regarded as a promising family of cathode materials for high-performance lithium-ion batteries,but the practical applications have been limited because of severe capacity deterioration(such as Li Mn O_(2)and Li Mn_(2)O_(4))as well as further complications from successive structure changes during cycling,low initial coulombic efficiency(such as Li-rich cathode)and oxidization of organic carbonate solvents at high charge potential(such as Li Ni0.5 Mn1.5 O4).Large amounts of efforts have been concentrated on resolving these issues towards practical applications,and many vital progresses have been carried out.Hence,the primary target of this review is focused on different proposed strategies and breakthroughs to enhance the rate performance and cycling stability of nanostructured Mn-based oxide cathode materials for Li-ion batteries,including morphology control,ion doping,surface coatings,composite construction.The combination of delicate architectures with conductive species represents the perspective ways to enhance the conductivity of the cathode materials and further buffer the structure transformation and strain during cycling.At last,based on the elaborated progress,several perspectives of Mn-based oxide cathodes are summarized,and some possible attractive strategies and future development directions of Mn-based oxide cathodes with enhanced electrochemical properties are proposed.The review will offer a detailed introduction of various strategies enhancing electrochemical performance and give a novel viewpoint to shed light on the future innovation in Mn-based oxide cathode materials,which benefits the design and construction of high-performance Mn-based oxide cathode materials in the future. 展开更多
关键词 Mn-based oxide Cathode material Electrochemical property Modification
下载PDF
Non-aqueous lithium bromine battery of high energy density with carbon coated membrane 被引量:1
3
作者 Xiaoli Xi Xianfeng Li +4 位作者 Chenhui Wang qinzhi lai Yuanhui Cheng Pengcheng Xu Huamin Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第4期639-646,共8页
Flow batteries with high energy density and long cycle life have been pursued to advance the progress of energy storage and grid application. Non-aqueous batteries with wide voltage windows represent a promising techn... Flow batteries with high energy density and long cycle life have been pursued to advance the progress of energy storage and grid application. Non-aqueous batteries with wide voltage windows represent a promising technology without the limitation of water electrolysis, but they suffer from low electrolyte concentration and unsatisfactory battery performance. Here, a non-aqueous lithium bromine rechargeable battery is proposed, which is based on Br;/Br;and Li;/Li as active redox pairs, with fast redox kinetics and good stability. The Li/Br battery combines the advantages of high output voltage(;.1 V),electrolyte concentration(3.0 mol/L), maximum power density(29.1 m W/cm;) and practical energy density(232.6 Wh/kg). Additionally, the battery displays a columbic efficiency(CE) of 90.0%, a voltage efficiency(VE) of 88.0% and an energy efficiency(EE) of 80.0% at 1.0 m A/cm;after continuously running for more than 1000 cycles, which is by far the longest cycle life reported for non-aqueous flow batteries. 展开更多
关键词 NON-AQUEOUS BATTERY LITHIUM BROMINE ENERGY-STORAGE
下载PDF
Enlarging Zn deposition space via regulating Sn-induced effective interface for high areal capacity zinc-based flow battery
4
作者 Yuning Sun Siyu Zhang +5 位作者 Qiming Zhang Lantong Cui Pengfei Wang Yanbin Yin Qian Wang qinzhi lai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期579-586,I0012,共9页
Zinc-based flow batteries(ZFBs)have aroused great favor in large-scale energy storage due to the high security and low cost.However,the low areal capacity arising from the limited space for Zn plating hinders the furt... Zinc-based flow batteries(ZFBs)have aroused great favor in large-scale energy storage due to the high security and low cost.However,the low areal capacity arising from the limited space for Zn plating hinders the further development.Herein,a novel carbon felt-Sn-carbon felt sandwich host(CSCH)is designed and constructed.Benefiting from the strong chemical absorption and the dehydration effect on Zn(H_(2)O)_(6)^(2+),the Sn activation layer in the CSCH demonstrates the lowest comprehensive resistance for Zn deposition.Thus,Zn is induced to nucleate preferentially on the Sn activation layer,and grows towards the membrane,regulating the spatial distribution of Zn electrochemical deposits,which remarkably improves the areal capacity and cyclic stability of Zn anode.Consequently,the zinc-bromine flow batteries equipped with CSCH electrodes can achieve the ultra-high areal capacity of 120 mA h cm^(-2)at 80 mA cm^(-2),and run stably for 140 h with average energy efficiency of 80.3%in the extreme condition(80 mA cm^(-2),80 mA h cm^(-2)).This innovative work will inspire future advanced designs for high areal capacity electrodes in ZFBs. 展开更多
关键词 Zinc-based flow batteries High areal capacity Sn-induced deposition Zn deposition depth
下载PDF
A non-aqueous Li/organosulfur semi-solid flow battery 被引量:2
5
作者 Chenhui Wang qinzhi lai +2 位作者 Pengcheng Xu Xianfeng Li Huamin Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第5期716-718,共3页
Non-aqueous flow batteries have attracted extensive attention due to the advantages of wide voltagewindow, high energy density and wide operating temperature and so on. Herein, tetramethylthiuramdisulfide (TMTD) wit... Non-aqueous flow batteries have attracted extensive attention due to the advantages of wide voltagewindow, high energy density and wide operating temperature and so on. Herein, tetramethylthiuramdisulfide (TMTD) with high intrinsic capacity (223 mAh/g) and high solubility (-1 mol/L in chloroform) isinvestigated as the positive active material of the non-aqueous LiJdisulfide semi-solid flow battery. Theelectrochemical activity and reversibility are investigated by cyclic voltammetry and linear scanvoltammetry. This Li/TMTD battery with a high cell voltage of 3.36 V achieves coulombic efficiency of 99%,voltage efficiency of 73% and energy efficiency of 72% at the current density of 5 mA/cm2 with activematerial concentration of 0.1 mol/L. Moreover, the LiJTMTD battery can operate for 100 cycles withoutobvious efficiency decay, indicating good stability. 展开更多
关键词 Energy storage Batteries Organosulfur High energy density High cell voltage
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部