Mn-based oxides have been regarded as a promising family of cathode materials for high-performance lithium-ion batteries,but the practical applications have been limited because of severe capacity deterioration(such a...Mn-based oxides have been regarded as a promising family of cathode materials for high-performance lithium-ion batteries,but the practical applications have been limited because of severe capacity deterioration(such as Li Mn O_(2)and Li Mn_(2)O_(4))as well as further complications from successive structure changes during cycling,low initial coulombic efficiency(such as Li-rich cathode)and oxidization of organic carbonate solvents at high charge potential(such as Li Ni0.5 Mn1.5 O4).Large amounts of efforts have been concentrated on resolving these issues towards practical applications,and many vital progresses have been carried out.Hence,the primary target of this review is focused on different proposed strategies and breakthroughs to enhance the rate performance and cycling stability of nanostructured Mn-based oxide cathode materials for Li-ion batteries,including morphology control,ion doping,surface coatings,composite construction.The combination of delicate architectures with conductive species represents the perspective ways to enhance the conductivity of the cathode materials and further buffer the structure transformation and strain during cycling.At last,based on the elaborated progress,several perspectives of Mn-based oxide cathodes are summarized,and some possible attractive strategies and future development directions of Mn-based oxide cathodes with enhanced electrochemical properties are proposed.The review will offer a detailed introduction of various strategies enhancing electrochemical performance and give a novel viewpoint to shed light on the future innovation in Mn-based oxide cathode materials,which benefits the design and construction of high-performance Mn-based oxide cathode materials in the future.展开更多
Flow batteries with high energy density and long cycle life have been pursued to advance the progress of energy storage and grid application. Non-aqueous batteries with wide voltage windows represent a promising techn...Flow batteries with high energy density and long cycle life have been pursued to advance the progress of energy storage and grid application. Non-aqueous batteries with wide voltage windows represent a promising technology without the limitation of water electrolysis, but they suffer from low electrolyte concentration and unsatisfactory battery performance. Here, a non-aqueous lithium bromine rechargeable battery is proposed, which is based on Br;/Br;and Li;/Li as active redox pairs, with fast redox kinetics and good stability. The Li/Br battery combines the advantages of high output voltage(;.1 V),electrolyte concentration(3.0 mol/L), maximum power density(29.1 m W/cm;) and practical energy density(232.6 Wh/kg). Additionally, the battery displays a columbic efficiency(CE) of 90.0%, a voltage efficiency(VE) of 88.0% and an energy efficiency(EE) of 80.0% at 1.0 m A/cm;after continuously running for more than 1000 cycles, which is by far the longest cycle life reported for non-aqueous flow batteries.展开更多
Zinc-based flow batteries(ZFBs)have aroused great favor in large-scale energy storage due to the high security and low cost.However,the low areal capacity arising from the limited space for Zn plating hinders the furt...Zinc-based flow batteries(ZFBs)have aroused great favor in large-scale energy storage due to the high security and low cost.However,the low areal capacity arising from the limited space for Zn plating hinders the further development.Herein,a novel carbon felt-Sn-carbon felt sandwich host(CSCH)is designed and constructed.Benefiting from the strong chemical absorption and the dehydration effect on Zn(H_(2)O)_(6)^(2+),the Sn activation layer in the CSCH demonstrates the lowest comprehensive resistance for Zn deposition.Thus,Zn is induced to nucleate preferentially on the Sn activation layer,and grows towards the membrane,regulating the spatial distribution of Zn electrochemical deposits,which remarkably improves the areal capacity and cyclic stability of Zn anode.Consequently,the zinc-bromine flow batteries equipped with CSCH electrodes can achieve the ultra-high areal capacity of 120 mA h cm^(-2)at 80 mA cm^(-2),and run stably for 140 h with average energy efficiency of 80.3%in the extreme condition(80 mA cm^(-2),80 mA h cm^(-2)).This innovative work will inspire future advanced designs for high areal capacity electrodes in ZFBs.展开更多
Non-aqueous flow batteries have attracted extensive attention due to the advantages of wide voltagewindow, high energy density and wide operating temperature and so on. Herein, tetramethylthiuramdisulfide (TMTD) wit...Non-aqueous flow batteries have attracted extensive attention due to the advantages of wide voltagewindow, high energy density and wide operating temperature and so on. Herein, tetramethylthiuramdisulfide (TMTD) with high intrinsic capacity (223 mAh/g) and high solubility (-1 mol/L in chloroform) isinvestigated as the positive active material of the non-aqueous LiJdisulfide semi-solid flow battery. Theelectrochemical activity and reversibility are investigated by cyclic voltammetry and linear scanvoltammetry. This Li/TMTD battery with a high cell voltage of 3.36 V achieves coulombic efficiency of 99%,voltage efficiency of 73% and energy efficiency of 72% at the current density of 5 mA/cm2 with activematerial concentration of 0.1 mol/L. Moreover, the LiJTMTD battery can operate for 100 cycles withoutobvious efficiency decay, indicating good stability.展开更多
基金financially supported by the National Natural Science Foundation of China(no.51672120)the Scientific Research Project of Mudanjiang Normal University(no.1355JG014)+1 种基金the Natural Science Foundation of Hebei Province of China(no.B2020501003)the Fundamental Research Funds for the Central Universities(no.N2023030)。
文摘Mn-based oxides have been regarded as a promising family of cathode materials for high-performance lithium-ion batteries,but the practical applications have been limited because of severe capacity deterioration(such as Li Mn O_(2)and Li Mn_(2)O_(4))as well as further complications from successive structure changes during cycling,low initial coulombic efficiency(such as Li-rich cathode)and oxidization of organic carbonate solvents at high charge potential(such as Li Ni0.5 Mn1.5 O4).Large amounts of efforts have been concentrated on resolving these issues towards practical applications,and many vital progresses have been carried out.Hence,the primary target of this review is focused on different proposed strategies and breakthroughs to enhance the rate performance and cycling stability of nanostructured Mn-based oxide cathode materials for Li-ion batteries,including morphology control,ion doping,surface coatings,composite construction.The combination of delicate architectures with conductive species represents the perspective ways to enhance the conductivity of the cathode materials and further buffer the structure transformation and strain during cycling.At last,based on the elaborated progress,several perspectives of Mn-based oxide cathodes are summarized,and some possible attractive strategies and future development directions of Mn-based oxide cathodes with enhanced electrochemical properties are proposed.The review will offer a detailed introduction of various strategies enhancing electrochemical performance and give a novel viewpoint to shed light on the future innovation in Mn-based oxide cathode materials,which benefits the design and construction of high-performance Mn-based oxide cathode materials in the future.
基金financial supported by the Natural Science Foundation of China(Grant No.21476224,21406219 and 51361135701)
文摘Flow batteries with high energy density and long cycle life have been pursued to advance the progress of energy storage and grid application. Non-aqueous batteries with wide voltage windows represent a promising technology without the limitation of water electrolysis, but they suffer from low electrolyte concentration and unsatisfactory battery performance. Here, a non-aqueous lithium bromine rechargeable battery is proposed, which is based on Br;/Br;and Li;/Li as active redox pairs, with fast redox kinetics and good stability. The Li/Br battery combines the advantages of high output voltage(;.1 V),electrolyte concentration(3.0 mol/L), maximum power density(29.1 m W/cm;) and practical energy density(232.6 Wh/kg). Additionally, the battery displays a columbic efficiency(CE) of 90.0%, a voltage efficiency(VE) of 88.0% and an energy efficiency(EE) of 80.0% at 1.0 m A/cm;after continuously running for more than 1000 cycles, which is by far the longest cycle life reported for non-aqueous flow batteries.
基金supported by the National Natural Science Foundation of China(22179019)the Natural Science Foundation of Hebei Province,China(B2020501003)the Fundamental Research Funds for the Central Universities(N2023030)。
文摘Zinc-based flow batteries(ZFBs)have aroused great favor in large-scale energy storage due to the high security and low cost.However,the low areal capacity arising from the limited space for Zn plating hinders the further development.Herein,a novel carbon felt-Sn-carbon felt sandwich host(CSCH)is designed and constructed.Benefiting from the strong chemical absorption and the dehydration effect on Zn(H_(2)O)_(6)^(2+),the Sn activation layer in the CSCH demonstrates the lowest comprehensive resistance for Zn deposition.Thus,Zn is induced to nucleate preferentially on the Sn activation layer,and grows towards the membrane,regulating the spatial distribution of Zn electrochemical deposits,which remarkably improves the areal capacity and cyclic stability of Zn anode.Consequently,the zinc-bromine flow batteries equipped with CSCH electrodes can achieve the ultra-high areal capacity of 120 mA h cm^(-2)at 80 mA cm^(-2),and run stably for 140 h with average energy efficiency of 80.3%in the extreme condition(80 mA cm^(-2),80 mA h cm^(-2)).This innovative work will inspire future advanced designs for high areal capacity electrodes in ZFBs.
基金supported by the financial support from the National Natural Science Foundation of China(Nos.21476224,21406219)the Key Project of Frontier Science,CAS(No.QYZDBSSW-JSC032)the National Youth Top-notch Talent Program and the Project of DICP-LCL
文摘Non-aqueous flow batteries have attracted extensive attention due to the advantages of wide voltagewindow, high energy density and wide operating temperature and so on. Herein, tetramethylthiuramdisulfide (TMTD) with high intrinsic capacity (223 mAh/g) and high solubility (-1 mol/L in chloroform) isinvestigated as the positive active material of the non-aqueous LiJdisulfide semi-solid flow battery. Theelectrochemical activity and reversibility are investigated by cyclic voltammetry and linear scanvoltammetry. This Li/TMTD battery with a high cell voltage of 3.36 V achieves coulombic efficiency of 99%,voltage efficiency of 73% and energy efficiency of 72% at the current density of 5 mA/cm2 with activematerial concentration of 0.1 mol/L. Moreover, the LiJTMTD battery can operate for 100 cycles withoutobvious efficiency decay, indicating good stability.