Data transmission among multicast trees is an efficient routing method in mobile ad hoc networks(MANETs). Genetic algorithms(GAs) have found widespread applications in designing multicast trees. This paper proposes a ...Data transmission among multicast trees is an efficient routing method in mobile ad hoc networks(MANETs). Genetic algorithms(GAs) have found widespread applications in designing multicast trees. This paper proposes a stable quality-of-service(QoS) multicast model for MANETs. The new model ensures the duration time of a link in a multicast tree is always longer than the delay time from the source node. A novel GA is designed to solve our QoS multicast model by introducing a new crossover mechanism called leaf crossover(LC), which outperforms the existing crossover mechanisms in requiring neither global network link information, additional encoding/decoding nor repair procedures. Experimental results confirm the effectiveness of the proposed model and the efficiency of the involved GA. Specifically, the simulation study indicates that our algorithm can obtain a better QoS route with a considerable reduction of execution time as compared with existing GAs.展开更多
基金supported in part by Supported by the National Natural Science Foundation of China (Grant No. 61370227)Research Foundation of Education Bureau of Hunan Province, China (Grant No. 17A070)
文摘Data transmission among multicast trees is an efficient routing method in mobile ad hoc networks(MANETs). Genetic algorithms(GAs) have found widespread applications in designing multicast trees. This paper proposes a stable quality-of-service(QoS) multicast model for MANETs. The new model ensures the duration time of a link in a multicast tree is always longer than the delay time from the source node. A novel GA is designed to solve our QoS multicast model by introducing a new crossover mechanism called leaf crossover(LC), which outperforms the existing crossover mechanisms in requiring neither global network link information, additional encoding/decoding nor repair procedures. Experimental results confirm the effectiveness of the proposed model and the efficiency of the involved GA. Specifically, the simulation study indicates that our algorithm can obtain a better QoS route with a considerable reduction of execution time as compared with existing GAs.