期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Interactivemedical image segmentation with self-adaptive confidence calibration
1
作者 Chuyun SHEN Wenhao LI +6 位作者 qisen xu Bin HU Bo JIN Haibin CAI Fengping ZHU Yuxin LI Xiangfeng WANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2023年第9期1332-1348,共17页
Interactive medical image segmentation based on human-in-the-loop machine learning is a novel paradigm that draws on human expert knowledge to assist medical image segmentation.However,existing methods often fall into... Interactive medical image segmentation based on human-in-the-loop machine learning is a novel paradigm that draws on human expert knowledge to assist medical image segmentation.However,existing methods often fall into what we call interactive misunderstanding,the essence of which is the dilemma in trading off short-and long-term interaction information.To better use the interaction information at various timescales,we propose an interactive segmentation framework,called interactive MEdical image segmentation with self-adaptive Confidence CAlibration(MECCA),which combines action-based confidence learning and multi-agent reinforcement learning.A novel confidence network is learned by predicting the alignment level of the action with short-term interaction information.A confidence-based reward-shaping mechanism is then proposed to explicitly incorporate confidence in the policy gradient calculation,thus directly correcting the model’s interactive misunderstanding.MECCA also enables user-friendly interactions by reducing the interaction intensity and difficulty via label generation and interaction guidance,respectively.Numerical experiments on different segmentation tasks show that MECCA can significantly improve short-and long-term interaction information utilization efficiency with remarkably fewer labeled samples.The demo video is available at https://bit.ly/mecca-demo-video. 展开更多
关键词 Medical image segmentation Interactive segmentation Multi-agent reinforcement learning Confidence learning Semi-supervised learning
原文传递
吡啶封端噻吩酰亚胺衍生物对含硼路易斯酸的光谱响应 被引量:1
2
作者 许启森 王德亮 +1 位作者 杨仕平 李洪祥 《中国科学:化学》 CAS CSCD 北大核心 2019年第10期1263-1271,共9页
光学带隙是影响光电材料性能的一个重要参数,决定着光电功能材料的性能和应用.本文设计合成了两种以2-位和4-位取代吡啶封端的噻吩酰亚胺(TPD)衍生物TPD-2-Py和TPD-4-Py.核磁共振谱、吸收光谱和发射光谱分析证明,它们可以通过吡啶环上... 光学带隙是影响光电材料性能的一个重要参数,决定着光电功能材料的性能和应用.本文设计合成了两种以2-位和4-位取代吡啶封端的噻吩酰亚胺(TPD)衍生物TPD-2-Py和TPD-4-Py.核磁共振谱、吸收光谱和发射光谱分析证明,它们可以通过吡啶环上的氮原子与路易斯酸三(五氟苯基)硼烷(BCF)络合.吸收光谱显示,TPD-2-Py和TPD-4-Py具有类似的吸收,与BCF络合后,它们的吸收光谱都发生了红移.进一步吸收光谱滴定实验发现,TPD-4-Py更易于与BCF配位,且TPD-4-Py与BCF络合物的最大吸收峰比TPD-2-Py与BCF络合物的最大吸收峰红移了20 nm,表明吡啶的取代位置对BCF的配位能力具有重要影响,而且改变吡啶取代位置可以实现对光学带隙的进一步调控. 展开更多
关键词 有机半导体 路易斯酸配位 光谱响应 带隙调控 光电功能材料
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部