期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Recharge processes limit the resource elements of Qarhan Salt Lake in western China and analogues in the evaporite basins 被引量:1
1
作者 Hualing SONG qishun fan +3 位作者 Qingkuan LI Tianyuan CHEN Haotian YANG Chunmei HAN 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第4期1226-1242,共17页
The Qarhan Salt Lake(QSL)in western China is K-Sr-Li-B-Br-Rb multi-resource coexisting Quaternary brine deposits.Significant research efforts have been directed to the origin of K-Li resources and evolutionary history... The Qarhan Salt Lake(QSL)in western China is K-Sr-Li-B-Br-Rb multi-resource coexisting Quaternary brine deposits.Significant research efforts have been directed to the origin of K-Li resources and evolutionary history of the QSL.However,the study on the different sources,recharge processes,and differential distribution patterns for these resource elements in brine deposits is still inadequate.Therefore,we measured Li-B concentrations and H-O-Sr-B isotopic compositions of different waters(river,spring,and brine)from the QSL,combined with the reported K-Sr contents and multiple isotopes of waters,to discuss the recharge,source of K-Sr-Li-B and their spatial distributions,by analogy with other evaporite basins in the world.The results show that:(1)the K-Li-B-Sr elemental concentrations of brines and their spatial distribution in the QSL are diverse;(2)high K and Sr values are distributed in Dabuxun and Qarhan sections,respectively,which are controlled by Ca-Cl springs in the northern QSL;on the contrary,Li and B values are enriched in the Bieletan section and are charged by thermal springs in the Kunlun Mountains;(3)the formation and evolution of Ca-Cl and thermal springs constrain fundamentally on the recharge processes of K-Sr and Li-B elements in the terminal salt lakes of the Qaidam Basin(QB);(4)some analogues of recharge processes limit the resource elements of the QSL and other salt lakes(Da Qaidam,Lop Nur,Zhabuye,Atacama,and Guayatayoc)in the world provides a reference for the resource exploration in deep formation waters in the evaporite basins. 展开更多
关键词 K-Sr-Li-B elements differential distribution recharge process Qarhan Salt Lake(QSL) analogue
下载PDF
Influencing mechanism and hydrogeological implications of water level fluctuation of lakes in the northern Qaidam Basin,Qinghai-Tibet Plateau
2
作者 Yaping CHENG qishun fan +3 位作者 Tianyuan CHEN Haotian YANG Qingkuan LI Chunmei HAN 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第4期1243-1257,共15页
The Qaidam Basin(QB)is a concentrated distribution area and chemical industrial bases of salt lakes in China.Lakes in the QB have been expanding during the past 20 years.Rapid lake expansion resulted in some considera... The Qaidam Basin(QB)is a concentrated distribution area and chemical industrial bases of salt lakes in China.Lakes in the QB have been expanding during the past 20 years.Rapid lake expansion resulted in some considerable scientific issues on the protection of salt lake resources and infrastructure,and monitoring of hydrological processes at the lake-basin scale.Although the spatial-temporal trends of lake changes on the Qinghai-Tibet Plateau(QTP)have been well documented,the underlying influencing mechanism and hydrogeological implications of rapid lake changes in the QB are not well understood.Three lakes in the northern QB were selected to investigate lake water level fluctuations on different time scales based on extensive in-situ monitoring and satellite observations.The influencing mechanism and hydrogeological implications of rapid changes of terminal lakes were discussed in combination with the reported increasing precipitation rate and mass balance of glaciers in the northern QTP.Results reveal the following:(1)the fluctuation pattern of Sugan Lake was asynchronous and out of phase with that of Xiao Qaidam and Toson lakes during the monitoring period;(2)Sugan Lake water rose gradually,and the rise interval was from late April to early July.In contrast,Xiao Qaidam and Toson lakes took on a rapid and steep rise,and the rise intervalwas from late July to September;(3)the influencing mechanisms for rapid lake fluctuations are controlled by different factors:glacier and snow melting with increasing temperature for Sugan Lake and increasing precipitation for Xiao Qaidam and Toson lakes;(4)in accordance with different intervals and influencing mechanisms of rapid lake expansions in the QB,hydrological risk precaution of lakes and corresponding river catchments was conducted in different parts of the basin.This study provided an important scientific basis for assessing the hydrological process and hydrological risk precaution,and protection of salt lake resources along with rapid lake expansions in the arid area. 展开更多
关键词 lake level fluctuation influencing mechanism hydrogeological implication northern Qaidam Basin in-situ monitoring
下载PDF
Evaluation of boron isotopes in halite as an indicator of the salinity of Qarhan paleolake water in the eastern Qaidam Basin, western China 被引量:4
3
作者 Yongsheng Du qishun fan +8 位作者 Donglin Gao Haicheng Wei Fashou Shan Binkai Li Xiangru Zhang Qin Yuan Zhanjie Qin Qianhui Ren Xueming Teng 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第1期253-262,共10页
In this study, nineteen brine samples from the Qarhan Salt Lake(QSL) in western China were collected and analyzed for boron(B) and chlorine(Cl) concentrations, total dissolved solids(TDS), pH values and stable B isoto... In this study, nineteen brine samples from the Qarhan Salt Lake(QSL) in western China were collected and analyzed for boron(B) and chlorine(Cl) concentrations, total dissolved solids(TDS), pH values and stable B isotopic compositions. The B concentrations and δ^(11) B values of brines in the QSL range from 51.6 mg/L to138.4 mg/L, and from +9.32& to +13.08&, respectively. By comparison of B concentrations and TDS of brines in QSL with evaporation paths of brackish water, we found that B enrichment of brines primarily results from strong evaporation and concentration of Qarhan lake water. Combining with comparisons of B concentrations, TDS, p H values and δ^(11) B values of brines, previously elemental ratios(K/Cl, Mg/Cl, Ca/Cl, B/Cl) and δ^(11) B values of halite from a sediment core(ISL1 A), we observe good correlations between B concentrations and TDS, TDS and pH values, pH and δ^(11) B values of brines, which demonstrate that higher B concentrations and more positive δ^(11) B values of halite indicate higher salinity of the Qarhan paleolake water as well as drier paleoclimatic conditions. Based on this interpretation of the δ^(11) B values of halite in core ISL1 A, higher salinity of the Qarhan paleolake occurred during two intervals, around 46-34 ka and26-9 ka, which are almost coincident with the upper and lower halite-dominated salt layers in core ISL1 A,drier climate phases documented from the δ^(18) O record of carbonate in core ISL1 A and the paleomoisture record in monsoonal central Asia, and a higher solar insolation at 30°N. These results demonstrate that the δ^(11) B values of halite in the arid Qaidam Basin could be regarded as a new proxy for reconstructing the salinity record of paleolake water as well as paleoclimate conditions. 展开更多
关键词 B isotope compositions Brine Chemical concentrations Qarhan salt lake Western China Salinity of paleolake water
下载PDF
Using remote-sensing technologies in combination with Cesium-137 measurements to estimate soil-erosion quantity in semi-arid steppe areas
4
作者 ZhanJiang Sha HaiZhou Ma +3 位作者 LingQin Li Jinzhou Du FeiQuan Wu qishun fan 《Research in Cold and Arid Regions》 2009年第5期467-474,共8页
Soil erosion by wind is one of the most important processes in the changing the earth's surface in semi-arid areas,Thus it is of great importance to study soil-erosion action.Using integrated technologies of remot... Soil erosion by wind is one of the most important processes in the changing the earth's surface in semi-arid areas,Thus it is of great importance to study soil-erosion action.Using integrated technologies of remote sensing and geochemistry radioactivity iso-tope to extract regional soil-erosion information and to calculate quantity of soil erosion is accomplished successfully in this paper by means of beneficial experiments in the Talatan region of the Gonghe Basin,which is located in northeastern Qinghai-Tibet Pla-teau in China.The results show that the soil erosion by wind is not intensive in this region;the erosion types belong to the classes of very-soft erosion and soft-erosion type,which account for 47.12 percent and 35.58 percent,respectively,of the total study area.In total,two kinds of soil erosion account for 82.70 percent of the study area;only a small area belongs to the classes of severe erosion and very-severe erosion;this area is about 22.14 km2.Severe deposition activity has taken place in this region,and has appeared in a large area(322.67 km2),which accounts for 11.78 percent of the total study area.The results of this study show that soil erosion and deposition inventories are 870,000-1,150,000 tons and 550,000-780,000 tons,respectively,per year.The soil in-ventory shows about 320,000-370,000 tons from Talatan to Longyangxia reservoir per year.Using remote-sensing technology and 137Cs techniques is a valid means to analyze and to evaluate the quantity of soil erosion by wind in semi-arid environments. 展开更多
关键词 remote sensing cesium-137 soil erosion wind erosion China
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部