To develop a convenient method for sensitive and selective determination of Ce3+ in aqueous phase with complicated matrices, a carbon paste electrode(CPE) modified with ion imprinted polymers(IIPs) were fabricate...To develop a convenient method for sensitive and selective determination of Ce3+ in aqueous phase with complicated matrices, a carbon paste electrode(CPE) modified with ion imprinted polymers(IIPs) were fabricated. The polymers were prepared by precipitation polymerization using Ce3+ as template, allyl phenoxyacetate(APA) as monomer, ethylene glycol dimethacrylate(EGDMA) as crosslinker and azobisisobutyronitrile(AIBN) as initiator under the molar ratio of Ce3+, APA and EGDMA as 1:4:40, respectively. Ce3+ was detected directly by differential pulse adsorptive stripping voltammetry(DPASV) and its oxidation peak appears at about 0.93 V. All parameters affecting the sensor's response are optimized and a calibration curve is plotted at a linear range of 1.0 × 10^(-6)-1.0 x 10^(-5) mol/L and 1.0×10^(-5)-2.0 × 10^(-4)mol/L with the detection limit of 1.5 × 10^(-7) mol/L. All other rare earth ions have no interference with the determination of Ce^(3+) even at a concentration 500 times higher than that of Ce^(3+).This sensor was successfully applied to determination of Ce^(3+) in two catalyst sample solutions with RSD≤3.3%(n = 5)and recoveries in the range of 99.2%-106.5% at our optimal conditions.展开更多
基金Project supported by the National Natural Science Foundation of China(21465025)the Doctoral Fund of Ministry of Education of China(20125301110005)the Science Foundation of Yunnan Province(2017FB012)
文摘To develop a convenient method for sensitive and selective determination of Ce3+ in aqueous phase with complicated matrices, a carbon paste electrode(CPE) modified with ion imprinted polymers(IIPs) were fabricated. The polymers were prepared by precipitation polymerization using Ce3+ as template, allyl phenoxyacetate(APA) as monomer, ethylene glycol dimethacrylate(EGDMA) as crosslinker and azobisisobutyronitrile(AIBN) as initiator under the molar ratio of Ce3+, APA and EGDMA as 1:4:40, respectively. Ce3+ was detected directly by differential pulse adsorptive stripping voltammetry(DPASV) and its oxidation peak appears at about 0.93 V. All parameters affecting the sensor's response are optimized and a calibration curve is plotted at a linear range of 1.0 × 10^(-6)-1.0 x 10^(-5) mol/L and 1.0×10^(-5)-2.0 × 10^(-4)mol/L with the detection limit of 1.5 × 10^(-7) mol/L. All other rare earth ions have no interference with the determination of Ce^(3+) even at a concentration 500 times higher than that of Ce^(3+).This sensor was successfully applied to determination of Ce^(3+) in two catalyst sample solutions with RSD≤3.3%(n = 5)and recoveries in the range of 99.2%-106.5% at our optimal conditions.