期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Automatic malware classification and new malware detection using machine learning 被引量:10
1
作者 Liu LIU Bao-sheng WANG +1 位作者 Bo YU qiu-xi zhong 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第9期1336-1347,共12页
The explosive growth ofmalware variants poses a major threat to information security. Traditional anti-virus systems based on signatures fail to classify unknown malware into their corresponding families and to detect... The explosive growth ofmalware variants poses a major threat to information security. Traditional anti-virus systems based on signatures fail to classify unknown malware into their corresponding families and to detect new kinds of malware pro- grams. Therefore, we propose a machine learning based malware analysis system, which is composed of three modules: data processing, decision making, and new malware detection. The data processing module deals with gray-scale images, Opcode n-gram, and import fimctions, which are employed to extract the features of the malware. The decision-making module uses the features to classify the malware and to identify suspicious malware. Finally, the detection module uses the shared nearest neighbor (SNN) clustering algorithm to discover new malware families. Our approach is evaluated on more than 20 000 malware instances, which were collected by Kingsoft, ESET NOD32, and Anubis. The results show that our system can effectively classify the un- known malware with a best accuracy of 98.9%, and successfully detects 86.7% of the new malware. 展开更多
关键词 Malware classification Machine learning N-GRAM Gray-scale image Feature extraction Malware detection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部