The coupling effects of ultrasonic excitation and high-strain-rate deformation are the core factors for weld formation during ultrasonic welding.However,interfacial deformation behavior still shrouds in uncer-tainty b...The coupling effects of ultrasonic excitation and high-strain-rate deformation are the core factors for weld formation during ultrasonic welding.However,interfacial deformation behavior still shrouds in uncer-tainty because of the contradictory features between mutual dislocation retardation caused by severely frictional deformation and ultrasonic-accelerated dislocation motion.[101]and[111]-oriented Cu single crystals which tended to form geometrically necessary boundaries(GNBs)were selected as the welding substrates to trace the uniquely acoustoplastic effects in the interfacial region under the ultrasonically excited high-strain-rate deformation.It was indicated that for a low energy input,micro-welds localized at the specific interface region,and equiaxed dislocation cells substituting for GNBs dominated in the ini-tial single crystal rotation region.As the welding energy increased,continuous shear deformation drove the dynamic recrystallization region covered by equiaxed grains to spread progressively.Limited discrete dislocations inside the recrystallized grains and nascent dislocation cells at the grain boundaries were ob-served in[101]and[111]joints simultaneously,suggesting that the ultrasonic excitation promoted motion of intragranular dislocation and pile-up along the sub-grain boundaries.The interfacial morphology be-fore and after expansion of recrystallization region all exhibited the weakening of orientation constraint on dislocation motion,which was also confirmed by the similar micro-hardness in joint interface.The first-principle calculation and applied strain-rate analysis further revealed that ultrasonic excitation en-hanced dislocation slipping,and enabled dislocation motion to accommodate severe plastic deformation at a high-strain-rate.展开更多
A series of large-area,flexible and transparent ultraviolet(UV)photodetectors(PDs)based on Ag nanowire(NW)@ZnO nanorods(NRs)are fabricated by an inexpensive,facile and effective approach.These Ag NW@ZnO NRs are succes...A series of large-area,flexible and transparent ultraviolet(UV)photodetectors(PDs)based on Ag nanowire(NW)@ZnO nanorods(NRs)are fabricated by an inexpensive,facile and effective approach.These Ag NW@ZnO NRs are successfully synthesized using a two-step method in an oil bath with a high surface-to-volume ratio and good crystallinity.The PDs are fabricated by drop-coating with different drop-coating times on the surface of polyethylene terephthalate(PET)coupled with Au electrodes.By optimizing the cross-linked network of Ag NW@ZnO NRs,PD2 with a size greater than 25 mm exhibits excellent photoresponse under UV light illumination of 365 nm(1.3 m W cm^(-2))with a bias of 5 V:a high sensitivity of over 10^(3),and a much shorter rise/decay time of 2.6 s/2.3 s.Simultaneously,the detector exhibits an average transmittance of more than 70%in the visible light region,as well as good flexibility and excellent mechanical stability under a bending angle of 120°over 1000 circles bending.These integral advantages have significant potential for practical applications and mass production.展开更多
基金supported by the National Nat-ural Science Foundation of China(No.52175310)A part of the work was also supported by the National Science and Technology Major Project(No.2017-VI-0009-0080)+1 种基金the Guang-dong Province Key Research and Development Program(No.2019B010935001)and the Shenzhen Science and Technology Plan(No.GXWD20201230155427003-20200821172456002).
文摘The coupling effects of ultrasonic excitation and high-strain-rate deformation are the core factors for weld formation during ultrasonic welding.However,interfacial deformation behavior still shrouds in uncer-tainty because of the contradictory features between mutual dislocation retardation caused by severely frictional deformation and ultrasonic-accelerated dislocation motion.[101]and[111]-oriented Cu single crystals which tended to form geometrically necessary boundaries(GNBs)were selected as the welding substrates to trace the uniquely acoustoplastic effects in the interfacial region under the ultrasonically excited high-strain-rate deformation.It was indicated that for a low energy input,micro-welds localized at the specific interface region,and equiaxed dislocation cells substituting for GNBs dominated in the ini-tial single crystal rotation region.As the welding energy increased,continuous shear deformation drove the dynamic recrystallization region covered by equiaxed grains to spread progressively.Limited discrete dislocations inside the recrystallized grains and nascent dislocation cells at the grain boundaries were ob-served in[101]and[111]joints simultaneously,suggesting that the ultrasonic excitation promoted motion of intragranular dislocation and pile-up along the sub-grain boundaries.The interfacial morphology be-fore and after expansion of recrystallization region all exhibited the weakening of orientation constraint on dislocation motion,which was also confirmed by the similar micro-hardness in joint interface.The first-principle calculation and applied strain-rate analysis further revealed that ultrasonic excitation en-hanced dislocation slipping,and enabled dislocation motion to accommodate severe plastic deformation at a high-strain-rate.
基金supported by the National Natural Science Foundation of China(No.51775140)partially supported by the Shenzhen Science and Technology Plan(No.JCYJ20180507183511908)+2 种基金the National Science and Technology Major Project(No.2017-VⅠ-0009-0080)the Key-Area Research and Development Program of Guangdong Province(No.2019B010935001)the Industry and Information Technology Bureau of Shenzhen Municipality(No.201806071354163490)。
文摘A series of large-area,flexible and transparent ultraviolet(UV)photodetectors(PDs)based on Ag nanowire(NW)@ZnO nanorods(NRs)are fabricated by an inexpensive,facile and effective approach.These Ag NW@ZnO NRs are successfully synthesized using a two-step method in an oil bath with a high surface-to-volume ratio and good crystallinity.The PDs are fabricated by drop-coating with different drop-coating times on the surface of polyethylene terephthalate(PET)coupled with Au electrodes.By optimizing the cross-linked network of Ag NW@ZnO NRs,PD2 with a size greater than 25 mm exhibits excellent photoresponse under UV light illumination of 365 nm(1.3 m W cm^(-2))with a bias of 5 V:a high sensitivity of over 10^(3),and a much shorter rise/decay time of 2.6 s/2.3 s.Simultaneously,the detector exhibits an average transmittance of more than 70%in the visible light region,as well as good flexibility and excellent mechanical stability under a bending angle of 120°over 1000 circles bending.These integral advantages have significant potential for practical applications and mass production.