期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Research on the Impacts of the Inertia and Droop Control Gains from a Variable-Speed Wind Turbine Generator on the Frequency Response
1
作者 Dejian Yang Yien Xu +6 位作者 Tong Zhu Yang Wang qiuhan cao Yuang Ma Enshu Jin Xinsong Zhang Haochen Sun 《Energy Engineering》 EI 2022年第2期539-554,共16页
System frequency must be kept very close to its nominal range to ensure the stability of an electric power grid.Excessive system frequency variations are able to result in load shedding,frequency instability,and even ... System frequency must be kept very close to its nominal range to ensure the stability of an electric power grid.Excessive system frequency variations are able to result in load shedding,frequency instability,and even generator damage.With increasing wind power penetration,there is rising concern about the reduction in inertia response and primary frequency control in the electric power grid.Converter-based wind generation is capable of providing inertia response and primary frequency response;nevertheless,the primary frequency and inertia responses of wind generation are different from those of conventional synchronous fleets;it is not completely understood how the primary frequency and inertia responses affect the given system under various disturbances and available kinetic energy levels.Simulations are used to investigate the influences of inertia and droop control strategies on the dynamic frequency responses,particularly the index of the second frequency drop under various disturbance and wind conditions.A quantitative analysis provides insight into setting of inertia and droop control coefficients for various wind and disturbance conditions to facilitate adequate dynamic frequency responses during frequency events. 展开更多
关键词 Wind power inertia control droop control frequency stability
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部