期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Building multipurpose nano-toolkit by rationally decorating NIR-Ⅱ fluorophore to meet the needs of tumor diagnosis and treatment 被引量:1
1
作者 Chaoxiang Cui Jiachen Li +8 位作者 Jing Fang Yan Zhao Yuqi Zhang Shuyue Ye Anna Wang Yali Feng qiulian mao Hongni Qin Haibin Shi 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第7期3478-3483,共6页
Phototheranostics have attracted tremendous attention in cancer diagnosis and treatment because of the noninvasiveness and promising effectiveness.Developing advanced phototheranostic agents with long emission wavelen... Phototheranostics have attracted tremendous attention in cancer diagnosis and treatment because of the noninvasiveness and promising effectiveness.Developing advanced phototheranostic agents with long emission wavelength,excellent biocompatibility,great tumor-targeting capability,and efficient therapeutic effect is highly desirable.However,the mutual constraint between imaging and therapeutic functions usually hinders their wide applications in biomedical field.To balance this contradiction,we herein rationally designed and synthesized three novel tumor-targeted NIR-Ⅱ probes(QR-2PEG_(321),QR-2PEG_(1000),and QR-2PEG_(5000)) by conjugating three different chain lengths of PEG onto an integrin α_(v)β_(3)-targeted NIR-Ⅱ heptamethine cyanine fluorophore,respectively.In virtue of the essential amphiphilic characteristics of PEG polymers,these probes display various degree of aggregation in aqueous buffer accompanying with differential NIR-Ⅱ imaging and photothermal(PTT) therapeutic performance.Both in vitro and in vivo results have demonstrated that probe QR-2PEG_(5000) has the best NIR-Ⅱ imaging performance with prominent renal clearance,whereas QR-2PEG_(321)possesses excellent photoacoustic signal as well as PTT effect,which undoubtedly provides a promising toolbox for tumor diagnosis and therapy.We thus envision that these synthesized probes have great potential to be explored as a toolkit for precise diagnosis and treatment of malignant tumors. 展开更多
关键词 Phototheranostics NIR-Ⅱprobe Cyanine fluorophore Photoacoustic imaging Photothermal therapy
原文传递
Photoacoustic and magnetic resonance imaging-based gene and photothermal therapy using mesoporous nanoagents
2
作者 Hao Huang Guotao Yuan +9 位作者 Ying Xu Yuan Gao qiulian mao Yin Zhang Lu Bai Weijie Li Anqing Wu Wentao Hu Yue Pan Guangming Zhou 《Bioactive Materials》 SCIE 2022年第3期157-167,共11页
The integration of photothermal therapy(PTT)with gene therapy(GT)in a single nanoscale platform demonstrates great potential in cancer therapy.Porous iron oxide nanoagents(PIONs)are widely used as magnetic nanoagents ... The integration of photothermal therapy(PTT)with gene therapy(GT)in a single nanoscale platform demonstrates great potential in cancer therapy.Porous iron oxide nanoagents(PIONs)are widely used as magnetic nanoagents in the drug delivery field and also serve as a photothermal nanoagent for photothermal therapy.However,the therapeutic efficacy of PIONs-mediated GT has not been studied.The long noncoding RNA(lncRNA)CRYBG3(LNC CRYBG3),a lncRNA induced by heavy ion irradiation in lung cancer cells,has been reported to directly bind to globular actin(G-actin)and cause degradation of cytoskeleton and blocking of cytokinesis,thus indicating its potential for use in GT by simulating the effect of heavy ion irradiation and functioning as an antitumor drug.In the present study,we investigated the possibility of combining PIONs-mediated PTT and LNC CRYBG3-mediated GT to destroy non-small cell lung cancer(NSCLC)cells both in vitro and in vivo.The combination therapy showed a high cancer cell killing efficacy,and the cure rate was better than that achieved using PTT or GT alone.Moreover,as a type of magnetic nanoagent,PIONs can be used for magnetic resonance imaging(MRI)and photoacoustic imaging(PAI)both in vitro and in vivo.These findings indicate that the new combination therapy has high potential for cancer treatment. 展开更多
关键词 Gene therapy(GT) Porous iron oxide nanoagents(PIONs) Photothermal therapy(PTT) Long noncoding RNA CRYBG3
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部