The impact of carbon doping on the background carrier conduction in GaN has been investigated.It is found that the incorporation of carbon can effectively suppress the n-type background carrier concentration as expect...The impact of carbon doping on the background carrier conduction in GaN has been investigated.It is found that the incorporation of carbon can effectively suppress the n-type background carrier concentration as expected.Moreover,from the fitting of the temperature-dependent carrier concentration and mobility,it is observed that high nitrogen-vacancy(VN)dominates the background carrier at room temperature which consequently results in n-type conduction.The doping agent(carbon atom)occupies the nitrogen site of GaN and forms CN deep acceptor as revealed from photoluminescence.Besides,a relatively low hole concentration is ionized at room temperature which was insufficient for the compensation of n-type background carriers.Therefore,we concluded that this background carrier concentration can be suppressed by carbon doping,which substitutes the N site of GaN and finally decreases the VN.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2017YFB0402800)the Key Research and Development Program of Guangdong Province,China(Grant No.2020B010174003)+1 种基金the National Natural Science Foundation of China(Grant No.U1601210)the Natural Science Foundation of Guangdong Province,China(Grant No.2015A030312011)。
文摘The impact of carbon doping on the background carrier conduction in GaN has been investigated.It is found that the incorporation of carbon can effectively suppress the n-type background carrier concentration as expected.Moreover,from the fitting of the temperature-dependent carrier concentration and mobility,it is observed that high nitrogen-vacancy(VN)dominates the background carrier at room temperature which consequently results in n-type conduction.The doping agent(carbon atom)occupies the nitrogen site of GaN and forms CN deep acceptor as revealed from photoluminescence.Besides,a relatively low hole concentration is ionized at room temperature which was insufficient for the compensation of n-type background carriers.Therefore,we concluded that this background carrier concentration can be suppressed by carbon doping,which substitutes the N site of GaN and finally decreases the VN.