The extended optima straints of miss distance and Schwartz inequality. To reduce guidance law with terminal conmpact angle is derived by the terminal acceleration and eliminate gravity disturbance absolutely, the obje...The extended optima straints of miss distance and Schwartz inequality. To reduce guidance law with terminal conmpact angle is derived by the terminal acceleration and eliminate gravity disturbance absolutely, the object function, which designs the weight of control command to be the power function of time-to-go's reciprocal, is given. And the gravity is considered when building the state equation. Based on the parsing express of the guidance command change with varying time and adjoint system analysis method, the command characteristics and the non-dimensional miss distance of the guidance law are analyzed, a design principle of guidance order coefficients is discussed. Finally, based on the requirement of engineering, the method to calculate the guidance condition and maximal required acceleration of the guidance law is given. The simulation demonstrates that not only the guidance law can satisfy the terminal position and impact angle constraints, but also the terminal acceleration can be converged toward zero, which will support a good situation for the terminal angle of attacking control.展开更多
An improved approach is presented in this paper to implement highly constrained cooperative guidance to attack a stationary target.The problem with time-varying Proportional Navigation(PN)gain is first formulated as a...An improved approach is presented in this paper to implement highly constrained cooperative guidance to attack a stationary target.The problem with time-varying Proportional Navigation(PN)gain is first formulated as a nonlinear optimal control problem,which is difficult to solve due to the existence of nonlinear kinematics and nonconvex constraints.After convexification treatments and discretization,the solution to the original problem can be approximately obtained by solving a sequence of Second-Order Cone Programming(SOCP)problems,which can be readily solved by state-of-the-art Interior-Point Methods(IPMs).To mitigate the sensibility of the algorithm on the user-provided initial profile,a Two-Stage Sequential Convex Programming(TSSCP)method is presented in detail.Furthermore,numerical simulations under different mission scenarios are conducted to show the superiority of the proposed method in solving the cooperative guidance problem.The research indicated that the TSSCP method is more tractable and reliable than the traditional methods and has great potential for real-time processing and on-board implementation.展开更多
A feasible guidance scheme with impact time constraint is proposed for attacking a stationary target by missiles with time-varying velocity.The main idea is to replace the constant velocity with the future mean veloci...A feasible guidance scheme with impact time constraint is proposed for attacking a stationary target by missiles with time-varying velocity.The main idea is to replace the constant velocity with the future mean velocity;therefore, the existing time-to-go estimation algorithm of the proportional navigation guidance law can be improved to adapt to varying conditions.In order to obtain the prediction of the velocity profile, the velocity differential equation to the downrange is derived, which can be numerically integrated between the current downrange and the target position by the on-board computer.Then, a third-order polynomial is introduced to fit the velocity profile in order to calculate the future mean velocity.At the beginning of each guidance loop, the future mean velocity is predicted and the time-to-go information is updated, based on which a novel biased proportional navigation guidance law is established to achieve the impact time constraint.Finally,numerical simulation results verified the effectiveness of the time-to-go estimation algorithm and the proposed law.展开更多
The analysis of the passive rotation feature of a micro Flapping Rotary Wing(FRW)applicable for Micro Air Vehicle(MAV) design is presented in this paper. The dynamics of the wing and its influence on aerodynamic p...The analysis of the passive rotation feature of a micro Flapping Rotary Wing(FRW)applicable for Micro Air Vehicle(MAV) design is presented in this paper. The dynamics of the wing and its influence on aerodynamic performance of FRW is studied at low Reynolds number(~10~3).The FRW is modeled as a simplified system of three rigid bodies: a rotary base with two flapping wings. The multibody dynamic theory is employed to derive the motion equations for FRW. A quasi-steady aerodynamic model is utilized for the calculation of the aerodynamic forces and moments. The dynamic motion process and the effects of the kinematics of wings on the dynamic rotational equilibrium of FWR and the aerodynamic performances are studied. The results show that the passive rotation motion of the wings is a continuous dynamic process which converges into an equilibrium rotary velocity due to the interaction between aerodynamic thrust, drag force and wing inertia. This causes a unique dynamic time-lag phenomena of lift generation for FRW, unlike the normal flapping wing flight vehicle driven by its own motor to actively rotate its wings. The analysis also shows that in order to acquire a high positive lift generation with high power efficiency and small dynamic time-lag, a relative high mid-up stroke angle within 7–15° and low mid-down stroke angle within -40° to -35° are necessary. The results provide a quantified guidance for design option of FRW together with the optimal kinematics of motion according to flight performance requirement.展开更多
A phased array radar seeker(PARS) must be able to effectively decouple body motion and accurately extract the line-of-sight(LOS) rate for target missile tracking.In this study,the realtime two-channel beam pointin...A phased array radar seeker(PARS) must be able to effectively decouple body motion and accurately extract the line-of-sight(LOS) rate for target missile tracking.In this study,the realtime two-channel beam pointing error(BPE) compensation method of PARS for LOS rate extraction is designed.The PARS discrete beam motion principium is analyzed,and the mathematical model of beam scanning control is finished.According to the principle of the antenna element shift phase,both the antenna element shift phase law and the causes of beam-pointing error under phantom-bit conditions are analyzed,and the effect of BPE caused by phantom-bit technology(PBT) on the extraction accuracy of the LOS rate is examined.A compensation method is given,which includes coordinate transforms,beam angle margin compensation,and detector dislocation angle calculation.When the method is used,the beam angle margin in the pitch and yaw directions is calculated to reduce the effect of the missile body disturbance and to improve LOS rate extraction precision by compensating for the detector dislocation angle.The simulation results validate the proposed method.展开更多
基金supported by the National Natural Science Foundation of China(50875024)
文摘The extended optima straints of miss distance and Schwartz inequality. To reduce guidance law with terminal conmpact angle is derived by the terminal acceleration and eliminate gravity disturbance absolutely, the object function, which designs the weight of control command to be the power function of time-to-go's reciprocal, is given. And the gravity is considered when building the state equation. Based on the parsing express of the guidance command change with varying time and adjoint system analysis method, the command characteristics and the non-dimensional miss distance of the guidance law are analyzed, a design principle of guidance order coefficients is discussed. Finally, based on the requirement of engineering, the method to calculate the guidance condition and maximal required acceleration of the guidance law is given. The simulation demonstrates that not only the guidance law can satisfy the terminal position and impact angle constraints, but also the terminal acceleration can be converged toward zero, which will support a good situation for the terminal angle of attacking control.
基金supported by the Joint Foundation of the Ministry of Education of China(No.6141A02022340).
文摘An improved approach is presented in this paper to implement highly constrained cooperative guidance to attack a stationary target.The problem with time-varying Proportional Navigation(PN)gain is first formulated as a nonlinear optimal control problem,which is difficult to solve due to the existence of nonlinear kinematics and nonconvex constraints.After convexification treatments and discretization,the solution to the original problem can be approximately obtained by solving a sequence of Second-Order Cone Programming(SOCP)problems,which can be readily solved by state-of-the-art Interior-Point Methods(IPMs).To mitigate the sensibility of the algorithm on the user-provided initial profile,a Two-Stage Sequential Convex Programming(TSSCP)method is presented in detail.Furthermore,numerical simulations under different mission scenarios are conducted to show the superiority of the proposed method in solving the cooperative guidance problem.The research indicated that the TSSCP method is more tractable and reliable than the traditional methods and has great potential for real-time processing and on-board implementation.
文摘A feasible guidance scheme with impact time constraint is proposed for attacking a stationary target by missiles with time-varying velocity.The main idea is to replace the constant velocity with the future mean velocity;therefore, the existing time-to-go estimation algorithm of the proportional navigation guidance law can be improved to adapt to varying conditions.In order to obtain the prediction of the velocity profile, the velocity differential equation to the downrange is derived, which can be numerically integrated between the current downrange and the target position by the on-board computer.Then, a third-order polynomial is introduced to fit the velocity profile in order to calculate the future mean velocity.At the beginning of each guidance loop, the future mean velocity is predicted and the time-to-go information is updated, based on which a novel biased proportional navigation guidance law is established to achieve the impact time constraint.Finally,numerical simulation results verified the effectiveness of the time-to-go estimation algorithm and the proposed law.
文摘The analysis of the passive rotation feature of a micro Flapping Rotary Wing(FRW)applicable for Micro Air Vehicle(MAV) design is presented in this paper. The dynamics of the wing and its influence on aerodynamic performance of FRW is studied at low Reynolds number(~10~3).The FRW is modeled as a simplified system of three rigid bodies: a rotary base with two flapping wings. The multibody dynamic theory is employed to derive the motion equations for FRW. A quasi-steady aerodynamic model is utilized for the calculation of the aerodynamic forces and moments. The dynamic motion process and the effects of the kinematics of wings on the dynamic rotational equilibrium of FWR and the aerodynamic performances are studied. The results show that the passive rotation motion of the wings is a continuous dynamic process which converges into an equilibrium rotary velocity due to the interaction between aerodynamic thrust, drag force and wing inertia. This causes a unique dynamic time-lag phenomena of lift generation for FRW, unlike the normal flapping wing flight vehicle driven by its own motor to actively rotate its wings. The analysis also shows that in order to acquire a high positive lift generation with high power efficiency and small dynamic time-lag, a relative high mid-up stroke angle within 7–15° and low mid-down stroke angle within -40° to -35° are necessary. The results provide a quantified guidance for design option of FRW together with the optimal kinematics of motion according to flight performance requirement.
文摘A phased array radar seeker(PARS) must be able to effectively decouple body motion and accurately extract the line-of-sight(LOS) rate for target missile tracking.In this study,the realtime two-channel beam pointing error(BPE) compensation method of PARS for LOS rate extraction is designed.The PARS discrete beam motion principium is analyzed,and the mathematical model of beam scanning control is finished.According to the principle of the antenna element shift phase,both the antenna element shift phase law and the causes of beam-pointing error under phantom-bit conditions are analyzed,and the effect of BPE caused by phantom-bit technology(PBT) on the extraction accuracy of the LOS rate is examined.A compensation method is given,which includes coordinate transforms,beam angle margin compensation,and detector dislocation angle calculation.When the method is used,the beam angle margin in the pitch and yaw directions is calculated to reduce the effect of the missile body disturbance and to improve LOS rate extraction precision by compensating for the detector dislocation angle.The simulation results validate the proposed method.