期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Multi-Scale Image Segmentation Model for Fine-Grained Recognition of Zanthoxylum Rust
1
作者 Fan Yang Jie Xu +5 位作者 Haoliang Wei Meng Ye Mingzhu Xu qiuru fu Lingfei Ren Zhengwen Huang 《Computers, Materials & Continua》 SCIE EI 2022年第5期2963-2980,共18页
Zanthoxylum bungeanum Maxim,generally called prickly ash,is widely grown in China.Zanthoxylum rust is the main disease affecting the growth and quality of Zanthoxylum.Traditional method for recognizing the degree of i... Zanthoxylum bungeanum Maxim,generally called prickly ash,is widely grown in China.Zanthoxylum rust is the main disease affecting the growth and quality of Zanthoxylum.Traditional method for recognizing the degree of infection of Zanthoxylum rust mainly rely on manual experience.Due to the complex colors and shapes of rust areas,the accuracy of manual recognition is low and difficult to be quantified.In recent years,the application of artificial intelligence technology in the agricultural field has gradually increased.In this paper,based on the DeepLabV2 model,we proposed a Zanthoxylum rust image segmentation model based on the FASPP module and enhanced features of rust areas.This paper constructed a fine-grained Zanthoxylum rust image dataset.In this dataset,the Zanthoxylum rust image was segmented and labeled according to leaves,spore piles,and brown lesions.The experimental results showed that the Zanthoxylum rust image segmentation method proposed in this paper was effective.The segmentation accuracy rates of leaves,spore piles and brown lesions reached 99.66%,85.16%and 82.47%respectively.MPA reached 91.80%,and MIoU reached 84.99%.At the same time,the proposed image segmentation model also had good efficiency,which can process 22 images per minute.This article provides an intelligent method for efficiently and accurately recognizing the degree of infection of Zanthoxylum rust. 展开更多
关键词 Zanthoxylum rust image segmentation deep learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部