The low temperature coal tar(CT)is taken as the raw material,and the extraction and column chromatography are used for detailed and accurate characterization in this paper.The n-heptane soluble fraction(CT-HS)and inso...The low temperature coal tar(CT)is taken as the raw material,and the extraction and column chromatography are used for detailed and accurate characterization in this paper.The n-heptane soluble fraction(CT-HS)and insoluble fraction(CT-HI)were obtained by n-heptane Soxhlet extraction.The extraction rate of CT-HS reached 92.79%(mass),which indicated that there are few heavy compounds in it.Further,different solvents(methylbenzene,benzene,ethyl acetate,methylbenzene-ethanol)were used to elute CT-HS by chromatographic column to obtain five fractions(saturates,aromatics,heteroatoms,phenolics and resins,named CT-SA,CT-AR,CT-HE,CT-PH,CT-RE,respectively).The yields of CTSA,CT-AR,CT-HE,CT-PH,CT-RE are 42.12%,10.43%,2.19%,9.50%and 6.63%(mass),respectively.Gas chromatography-mass spectrometry analysis of eluting components show that alkanes are the main components in CT,followed by polycyclic aromatics,and the corresponding fractions are CT-SA and CT-AR,respectively.The relative content of aliphatics in CT-SA is 76.93%,and the relative content of aromatics in CT-AR is 75.05%.This separation technology effectively separates and enriches different components in CT,and the activation energy required for the pyrolysis process of a single eluting fraction is lower than that of CT,which is expected to provide an important reference for the separation,analysis and conversion of complex oil products such as coal-oil co-processing products,coal tar and other complex heavy carbon oil products.展开更多
The catalytic cracking of coal tar asphaltene(CTA)pyrolysis vapors was carried out over transition metalion modified zeolites to promote the generation of light aromatic hydrocarbons(L-ArHs)in a pyrolysisgas chromatog...The catalytic cracking of coal tar asphaltene(CTA)pyrolysis vapors was carried out over transition metalion modified zeolites to promote the generation of light aromatic hydrocarbons(L-ArHs)in a pyrolysisgas chromatography/mass spectrometry(Py-GC/MS)micro-reactor system.The effects of ultra stable Y(USY),Co/USY and Mo/USY on the selectivity and yield of L-ArHs products and the extent of deoxygenation(Edeoxygenation),lightweight(Elightweight)from CTA pyrolysis volatiles were investigated.Results showed that the yields of L-ArHs are mainly controlled by the acid sites and specific surface area of the catalysts,while the deoxygenation effect is determined by theirs pore size.The Eligltweight of CTA pyrolysis volatiles over USY is 9.65%,while the Edeoxygenation of CTA pyrolysis volatiles over Mo/USY reaches 20.85%.Additionally,the modified zeolites(Mo/USY and Co/USY)exhibit better performance than USY on L-ArHs production,owing to the synergistic effect of metal ions(Mo,Co)and acid sites of USY.Compared with the non-catalytic fast pyrolysis of CTA,the total yield of L-ArHs obtained over USY(4032 mg·kg^(-1)),Co/USY(4363 mg·kg^(-1))and Mo/USY(4953 mg·kg^(-1))were increased by 27.03%,38.19%and 54.78%,respectively.Furthermore,the possible catalytic conversion mechanism of transition metal ion(Co and Mo)modified zeolites was proposed based on the distribution of products and the characterizations of catalysts.展开更多
HZSM-5 zeolites with Si/Al ratios of 20,35,50 and 65 were prepared by the directing crystallization process of silicalite-1 seeds.The influence of Si/Al ratios on the production of benzene,toluene,xylene and naphthale...HZSM-5 zeolites with Si/Al ratios of 20,35,50 and 65 were prepared by the directing crystallization process of silicalite-1 seeds.The influence of Si/Al ratios on the production of benzene,toluene,xylene and naphthalene(BTXN)originated from asphaltenes catalytic pyrolysis was explored by adopting Py-GC/MS.Modified Z5-50 zeolites were prepared by various metal ions(Ni^(2+),Mo^(6+),Fe^(3+),and Co^(2+))with different loading rates(3%(mass),5%(mass),7%(mass),and 9%(mass))and the physical and chemical properties of these zeolites were characterized by XRD,SEM,ICP-OES,XPS,NH_(3)-TPD,FTIR,Py-IR and N_(2)adsorption-desorption isotherm.In addition,they were employed to catalyze the conversion of asphaltenes pyrolysis production to BTXN using Py-GC/MS.Results show that the highest relative content of aromatics has been obtained over HZSM-5 with Si/Al ratio of 50(Z5-50),reaching 61.87%.Besides,the loading of Ni,Mo,Fe,and Co on Z5-50 leads to an increase of acid strength and provides new active sites.The relative content of BTXN increases by 3.17%over 3Ni-Z5,which may be ascribed to that Ni promoted the conversion of polycyclic aromatic hydrocarbons(PAHs)to monocyclic aromatics due to the cracking of aliphatic side chains of PAHs and the decrease of phenolic activation energy.While under the catalysis of 5Mo-Z5,the relative content of aromatics and BTXN augmented by 5.75%and 4.02%,respectively.In addition,the highest relative content of aromatics reaches 70.09%when the loading rate of Fe was 7%(mass),and the relative content of BTXN increases from 25.87%to 29.42%.The results demonstrate that the active sites provided by different metal species expressed diverse effects on BTXN.Although the Bronsted/Lewis acid ratios of HZSM-5 modified by metal decreased,the acid strength and the relative content of BTXN both increased,which illustrated that there is a synergistic catalysis with the Bronsted acid sites and Lewis acid sites provided by metal species.In general,the performance of the catalyst is affected by the pore structure,acidity and metal active sites.Moreover,the possible formation mechanism of BTXN derived from asphaltenes catalytic pyrolysis was proposed on the basis of structural features and catalytic performances of a series of zeolites.展开更多
基金financed by the project supported by the National Natural Science Foundation of China(22078266,21908180,22178289,22278338)the Key Research and Development Program of Shaanxi(2020ZDLGY11-02,2021GY-136)the Special Fund for High-level Scholars of China(XJ21B10)。
文摘The low temperature coal tar(CT)is taken as the raw material,and the extraction and column chromatography are used for detailed and accurate characterization in this paper.The n-heptane soluble fraction(CT-HS)and insoluble fraction(CT-HI)were obtained by n-heptane Soxhlet extraction.The extraction rate of CT-HS reached 92.79%(mass),which indicated that there are few heavy compounds in it.Further,different solvents(methylbenzene,benzene,ethyl acetate,methylbenzene-ethanol)were used to elute CT-HS by chromatographic column to obtain five fractions(saturates,aromatics,heteroatoms,phenolics and resins,named CT-SA,CT-AR,CT-HE,CT-PH,CT-RE,respectively).The yields of CTSA,CT-AR,CT-HE,CT-PH,CT-RE are 42.12%,10.43%,2.19%,9.50%and 6.63%(mass),respectively.Gas chromatography-mass spectrometry analysis of eluting components show that alkanes are the main components in CT,followed by polycyclic aromatics,and the corresponding fractions are CT-SA and CT-AR,respectively.The relative content of aliphatics in CT-SA is 76.93%,and the relative content of aromatics in CT-AR is 75.05%.This separation technology effectively separates and enriches different components in CT,and the activation energy required for the pyrolysis process of a single eluting fraction is lower than that of CT,which is expected to provide an important reference for the separation,analysis and conversion of complex oil products such as coal-oil co-processing products,coal tar and other complex heavy carbon oil products.
基金financed by the projects of the National Natural Science Foundation of China(21776229,21908180,22078266)the National Key Research&Development Program of China(2018YFB0604603)the Key Research and Development Program of Shaanxi(2020ZDLGY11-02,2018ZDXM-GY-167)。
文摘The catalytic cracking of coal tar asphaltene(CTA)pyrolysis vapors was carried out over transition metalion modified zeolites to promote the generation of light aromatic hydrocarbons(L-ArHs)in a pyrolysisgas chromatography/mass spectrometry(Py-GC/MS)micro-reactor system.The effects of ultra stable Y(USY),Co/USY and Mo/USY on the selectivity and yield of L-ArHs products and the extent of deoxygenation(Edeoxygenation),lightweight(Elightweight)from CTA pyrolysis volatiles were investigated.Results showed that the yields of L-ArHs are mainly controlled by the acid sites and specific surface area of the catalysts,while the deoxygenation effect is determined by theirs pore size.The Eligltweight of CTA pyrolysis volatiles over USY is 9.65%,while the Edeoxygenation of CTA pyrolysis volatiles over Mo/USY reaches 20.85%.Additionally,the modified zeolites(Mo/USY and Co/USY)exhibit better performance than USY on L-ArHs production,owing to the synergistic effect of metal ions(Mo,Co)and acid sites of USY.Compared with the non-catalytic fast pyrolysis of CTA,the total yield of L-ArHs obtained over USY(4032 mg·kg^(-1)),Co/USY(4363 mg·kg^(-1))and Mo/USY(4953 mg·kg^(-1))were increased by 27.03%,38.19%and 54.78%,respectively.Furthermore,the possible catalytic conversion mechanism of transition metal ion(Co and Mo)modified zeolites was proposed based on the distribution of products and the characterizations of catalysts.
基金financed by the project supported by the National Natural Science Foundation of China(21776229,21908180)National Key Research and Developent Program of China(2018YFB0604603)+2 种基金Key Research and Development Program of Shaanxi,China(2020ZDLGY11-02,2018ZDXM-GY-167)the project funded by China Postdoctoral Science Foundation(2019M653718,2020T130530)the project supported by Science and Technology Project of Yulin,China(2018-2-22)。
文摘HZSM-5 zeolites with Si/Al ratios of 20,35,50 and 65 were prepared by the directing crystallization process of silicalite-1 seeds.The influence of Si/Al ratios on the production of benzene,toluene,xylene and naphthalene(BTXN)originated from asphaltenes catalytic pyrolysis was explored by adopting Py-GC/MS.Modified Z5-50 zeolites were prepared by various metal ions(Ni^(2+),Mo^(6+),Fe^(3+),and Co^(2+))with different loading rates(3%(mass),5%(mass),7%(mass),and 9%(mass))and the physical and chemical properties of these zeolites were characterized by XRD,SEM,ICP-OES,XPS,NH_(3)-TPD,FTIR,Py-IR and N_(2)adsorption-desorption isotherm.In addition,they were employed to catalyze the conversion of asphaltenes pyrolysis production to BTXN using Py-GC/MS.Results show that the highest relative content of aromatics has been obtained over HZSM-5 with Si/Al ratio of 50(Z5-50),reaching 61.87%.Besides,the loading of Ni,Mo,Fe,and Co on Z5-50 leads to an increase of acid strength and provides new active sites.The relative content of BTXN increases by 3.17%over 3Ni-Z5,which may be ascribed to that Ni promoted the conversion of polycyclic aromatic hydrocarbons(PAHs)to monocyclic aromatics due to the cracking of aliphatic side chains of PAHs and the decrease of phenolic activation energy.While under the catalysis of 5Mo-Z5,the relative content of aromatics and BTXN augmented by 5.75%and 4.02%,respectively.In addition,the highest relative content of aromatics reaches 70.09%when the loading rate of Fe was 7%(mass),and the relative content of BTXN increases from 25.87%to 29.42%.The results demonstrate that the active sites provided by different metal species expressed diverse effects on BTXN.Although the Bronsted/Lewis acid ratios of HZSM-5 modified by metal decreased,the acid strength and the relative content of BTXN both increased,which illustrated that there is a synergistic catalysis with the Bronsted acid sites and Lewis acid sites provided by metal species.In general,the performance of the catalyst is affected by the pore structure,acidity and metal active sites.Moreover,the possible formation mechanism of BTXN derived from asphaltenes catalytic pyrolysis was proposed on the basis of structural features and catalytic performances of a series of zeolites.