The weakened protective efficacy of COVID-19 vaccines and antibodies caused by SARS-CoV-2 variants presents a global health emergency,which underscores the urgent need for universal therapeutic antibody intervention f...The weakened protective efficacy of COVID-19 vaccines and antibodies caused by SARS-CoV-2 variants presents a global health emergency,which underscores the urgent need for universal therapeutic antibody intervention for clinical patients.Here,we screened three alpacas-derived nanobodies(Nbs)with neutralizing activity from twenty RBD-specific Nbs.The three Nbs were fused with the Fc domain of human IgG,namely aVHH-11-Fc,aVHH-13-Fc and aVHH-14-Fc,which could specifically bind RBD protein and competitively inhibit the binding of ACE2 receptor to RBD.They effectively neutralized SARS-CoV-2 pseudoviruses D614G,Alpha,Beta,Gamma,Delta,and Omicron sub-lineages BA.1,BA.2,BA.4,and BA.5 and authentic SARS-CoV-2 prototype,Delta,and Omicron BA.1,BA.2 strains.In mice-adapted COVID-19 severe model,intranasal administration of aVHH-11-Fc,aVHH-13-Fc and aVHH-14-Fc effectively protected mice from lethal challenges and reduced viral loads in both the upper and lower respiratory tracts.In the COVID-19 mild model,aVHH-13-Fc,which represents the optimal neutralizing activity among the above three Nbs,effectively protected hamsters from the challenge of SARS-CoV-2 prototype,Delta,Omicron BA.1 and BA.2 by significantly reducing viral replication and pathological alterations in the lungs.In structural modeling of aVHH-13 and RBD,aVHH-13 binds to the receptor-binding motif region of RBD and interacts with some highly conserved epitopes.Taken together,our study illustrated that alpaca-derived Nbs offered a therapeutic countermeasure against SARS-CoV-2,including those Delta and Omicron variants which have evolved into global pandemic strains.展开更多
基金This work was supported by Jilin Province Youth Talent Support Project(grant number QT202115).
文摘The weakened protective efficacy of COVID-19 vaccines and antibodies caused by SARS-CoV-2 variants presents a global health emergency,which underscores the urgent need for universal therapeutic antibody intervention for clinical patients.Here,we screened three alpacas-derived nanobodies(Nbs)with neutralizing activity from twenty RBD-specific Nbs.The three Nbs were fused with the Fc domain of human IgG,namely aVHH-11-Fc,aVHH-13-Fc and aVHH-14-Fc,which could specifically bind RBD protein and competitively inhibit the binding of ACE2 receptor to RBD.They effectively neutralized SARS-CoV-2 pseudoviruses D614G,Alpha,Beta,Gamma,Delta,and Omicron sub-lineages BA.1,BA.2,BA.4,and BA.5 and authentic SARS-CoV-2 prototype,Delta,and Omicron BA.1,BA.2 strains.In mice-adapted COVID-19 severe model,intranasal administration of aVHH-11-Fc,aVHH-13-Fc and aVHH-14-Fc effectively protected mice from lethal challenges and reduced viral loads in both the upper and lower respiratory tracts.In the COVID-19 mild model,aVHH-13-Fc,which represents the optimal neutralizing activity among the above three Nbs,effectively protected hamsters from the challenge of SARS-CoV-2 prototype,Delta,Omicron BA.1 and BA.2 by significantly reducing viral replication and pathological alterations in the lungs.In structural modeling of aVHH-13 and RBD,aVHH-13 binds to the receptor-binding motif region of RBD and interacts with some highly conserved epitopes.Taken together,our study illustrated that alpaca-derived Nbs offered a therapeutic countermeasure against SARS-CoV-2,including those Delta and Omicron variants which have evolved into global pandemic strains.