期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Inhibition of inflammatory mediator release from microglia can treat ischemic/hypoxic brain injury 被引量:5
1
作者 Huaibo Wang Weitao Guo +4 位作者 Hongliang Liu Rong Zeng Mingnan Lu Ziqiu Chen qixian xiao 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第13期1157-1168,共12页
Interleukin-1α and interleukin-1β aggravate neuronal injury by mediating the inf1αmmatory reaction following ischemic/hypoxic brain injury. It remains unclear whether interleukin-1α and interleukin-1β are release... Interleukin-1α and interleukin-1β aggravate neuronal injury by mediating the inf1αmmatory reaction following ischemic/hypoxic brain injury. It remains unclear whether interleukin-1α and interleukin-1β are released by microglia or astrocytes. This study prepared hippocampal slices that were subsequently subjected to oxygen and glucose deprivation. Hematoxylin-eosin staining verified that neurons exhibited hypoxic changes. Results of enzyme-linked immunosorbent assay found that interleukin-1α and interleukin-1β participated in this hypoxic process. Moreover, when hypoxic injury occurred in the hippocampus, the release of interleukin-1α and interleukin-1β was mediated by the P2X4 receptor and P2X7 receptor. Immunofluorescence staining revealed that during ischemia/hypoxia, the P2X4 receptor, P2X7 receptor, interleukin-1α and interleukin-1β expression was detectable in rat hippocampal microglia, but only P2X4 receptor and P2X7 receptor expression was detected in astrocytes. Results suggested that the P2X4 receptor and P2X7 receptor, respectively, mediated interleukin-1α and interleukin-1β released by microglia, resulting in hippocampal ischemic/hypoxic injury. Astrocytes were activated, but did not synthesize or release interleukin-1α and interleukin-1β. 展开更多
关键词 neural regeneration brain injury inflammatory P2X4 receptor P2X7 receptor INTERLEUKIN-1Α INTERLEUKIN-1Β MICROGLIA ASTROCYTES oxygen-glucose deprivation hippocampal slices grants-supported paper NEUROREGENERATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部