Controllable fabrication of Fe-N-C based single-atom catalysts(SACs)for enhanced electrocatalytic performance is highly desirable but still challenging.Here,an in situ surface-confined strategy was demonstrated for th...Controllable fabrication of Fe-N-C based single-atom catalysts(SACs)for enhanced electrocatalytic performance is highly desirable but still challenging.Here,an in situ surface-confined strategy was demonstrated for the synthesis of single atomic Fe-N_(4))on N-doped carbon nanoleaves(L-FeNC).The in situ generated Zn3[Fe(CN)6]2 could not only serve as a protection layer against collapse of nanoleaves but also provide abundant Fe source for the formation of Fe-N moieties during pyrolysis,leading to high surface area and high graphitization degree of L-FeNC simultaneously.Benefiting from abundant Fe-N_(4))active sites,enhanced mass and charge transfer,the as-prepared L-FeNC manifested a half-wave potential of 0.89 V for oxygen reduction reaction(ORR)in 0.1 M KOH.A maximum power density of 140 m W cm^(-2)and stable discharge voltage even after operation for 50,000 s have been demonstrated when the L-FeNC was used as air cathode for Zn-air battery.This work not only provided a unique surfaceconfined strategy for the synthesis of two-dimensional nanocarbons,but also demonstrated the significant benefit from rational design and engineering of Fe-N-C SACs,thus offering great opportunities for fabrication of efficient energy conversion and storage devices.展开更多
Blue perovskite light-emitting diodes(PeLEDs)are essential in pixels of perovskite displays,while their progress lags far behind their red and green counterparts.Here,we focus on recent advances of blue PeLEDs and sys...Blue perovskite light-emitting diodes(PeLEDs)are essential in pixels of perovskite displays,while their progress lags far behind their red and green counterparts.Here,we focus on recent advances of blue PeLEDs and systematically review the noteworthy strategies,which are categorized into compositional engineering,dimensional control,and size confinement,on optimizing microstructures,energy landscapes,and charge behaviors of wide-bandgap perovskite emitters(bandgap>2.5 eV).Moreover,the stability of perovskite blue emitters and related devices is discussed.In the end,we propose a technical roadmap for the fabrication of state-of-the-art blue PeLEDs to chase and achieve comparable performance with the other two primary-color devices.展开更多
The slow kinetics at the cathode of oxygen reduction reaction(ORR)seriously limits the efficiencies of fuel cells and metal-air batteries.Pt,the state-of-the-art ORR electrocatalyst,suffers from high cost,low earth ab...The slow kinetics at the cathode of oxygen reduction reaction(ORR)seriously limits the efficiencies of fuel cells and metal-air batteries.Pt,the state-of-the-art ORR electrocatalyst,suffers from high cost,low earth abundance,and poor stability.Here a self-templated strategy based on metal-organic frameworks(MOFs)is proposed for the fabrication of hollow nitrogen-doped carbon spheres that are embedded with cobalt nanoparticles(Co/HNC).The Co/HNC manifests better ORR activities,methanol tolerance,and stability than commercial Pt/C.The high ORR performance of Co/NHC can be attributed to the hollow structure which provides enlarged electrochemically active surface area,the formation of more Co-N species,and the introduction of defects.This work highlights the significance of rational engineering of MOFs for enhanced ORR activity and stability and offers new routes to the design and synthesis of high-performance electrocatalysts.展开更多
Highly active and durable Pd-based electrocatalysts for ethanol oxidation reaction(EOR)play a crucial role in the commercialization of direct ethanol fuel cells(DEFCs).However,the poisonous intermediates(especially ad...Highly active and durable Pd-based electrocatalysts for ethanol oxidation reaction(EOR)play a crucial role in the commercialization of direct ethanol fuel cells(DEFCs).However,the poisonous intermediates(especially adsorbed CO species(COad))formed during the EOR process can easily adsorb and block the active sites on Pd electrodes,which in turn limits the catalytic efficiency.Hence,we present a series of Pd-based composites with a strong coupling interface consisting of Pd nanosheets and amorphous Bi(OH)_(3)species.The incorporation of Bi(OH)3 can induce an electron-rich state adjacent to the Pd sites and effectively separate the Pd ensemble,leading to excellent CO tolerance.The optimal Pd-Bi(OH)_(3)NSs catalyst manifests a mass activity of 2.2 A·mgPd^(-1),which is 5.7 and 2.0 times higher than that of Pd NSs and commercial Pd/C catalyst,respectively.Further CO-stripping experiments and CO-DRIFTS tests confirm the excellent CO tolerance on Pd-Bi(OH)3 NSs electrode,leading to the enhanced EOR durability.展开更多
基金supported by the National Natural Science Foundation of China(21673150,51922073)the Natural Science Foundation of Jiangsu Province(BK20180097)+2 种基金the financial support from the 111 Projectthe Collaborative Innovation Center of Suzhou Nano Science and Technology(NANO-CIC)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Controllable fabrication of Fe-N-C based single-atom catalysts(SACs)for enhanced electrocatalytic performance is highly desirable but still challenging.Here,an in situ surface-confined strategy was demonstrated for the synthesis of single atomic Fe-N_(4))on N-doped carbon nanoleaves(L-FeNC).The in situ generated Zn3[Fe(CN)6]2 could not only serve as a protection layer against collapse of nanoleaves but also provide abundant Fe source for the formation of Fe-N moieties during pyrolysis,leading to high surface area and high graphitization degree of L-FeNC simultaneously.Benefiting from abundant Fe-N_(4))active sites,enhanced mass and charge transfer,the as-prepared L-FeNC manifested a half-wave potential of 0.89 V for oxygen reduction reaction(ORR)in 0.1 M KOH.A maximum power density of 140 m W cm^(-2)and stable discharge voltage even after operation for 50,000 s have been demonstrated when the L-FeNC was used as air cathode for Zn-air battery.This work not only provided a unique surfaceconfined strategy for the synthesis of two-dimensional nanocarbons,but also demonstrated the significant benefit from rational design and engineering of Fe-N-C SACs,thus offering great opportunities for fabrication of efficient energy conversion and storage devices.
基金The authors disclose support for the research of this work from the Beijing Natural Science Foundation(JQ21005)the National Key R&D Program of China(2021YFB3800100,2021YFB3800101)+1 种基金China Postdoctoral Science Foundation(2022M720376)Beijing Postdoctoral Research Foundation.
文摘Blue perovskite light-emitting diodes(PeLEDs)are essential in pixels of perovskite displays,while their progress lags far behind their red and green counterparts.Here,we focus on recent advances of blue PeLEDs and systematically review the noteworthy strategies,which are categorized into compositional engineering,dimensional control,and size confinement,on optimizing microstructures,energy landscapes,and charge behaviors of wide-bandgap perovskite emitters(bandgap>2.5 eV).Moreover,the stability of perovskite blue emitters and related devices is discussed.In the end,we propose a technical roadmap for the fabrication of state-of-the-art blue PeLEDs to chase and achieve comparable performance with the other two primary-color devices.
基金supported by the National Natural Science Foundation of China(Nos.21673150 and 51922073)Natural Science Foundation of Jiangsu Province(No.BK20180097)。
文摘The slow kinetics at the cathode of oxygen reduction reaction(ORR)seriously limits the efficiencies of fuel cells and metal-air batteries.Pt,the state-of-the-art ORR electrocatalyst,suffers from high cost,low earth abundance,and poor stability.Here a self-templated strategy based on metal-organic frameworks(MOFs)is proposed for the fabrication of hollow nitrogen-doped carbon spheres that are embedded with cobalt nanoparticles(Co/HNC).The Co/HNC manifests better ORR activities,methanol tolerance,and stability than commercial Pt/C.The high ORR performance of Co/NHC can be attributed to the hollow structure which provides enlarged electrochemically active surface area,the formation of more Co-N species,and the introduction of defects.This work highlights the significance of rational engineering of MOFs for enhanced ORR activity and stability and offers new routes to the design and synthesis of high-performance electrocatalysts.
基金This work was supported by the National Natural Science Foundation of China(Nos.51922073 and 21902109)the Natural Science Foundation of Jiangsu Province(Nos.BK20200960 and BK20180097)+1 种基金the Natural Science Foundation of Higher Education in Jiangsu Province(No.20KJB150041)the Natural Science Foundation of Nantong University for High-Level Talent(No.03083033).
文摘Highly active and durable Pd-based electrocatalysts for ethanol oxidation reaction(EOR)play a crucial role in the commercialization of direct ethanol fuel cells(DEFCs).However,the poisonous intermediates(especially adsorbed CO species(COad))formed during the EOR process can easily adsorb and block the active sites on Pd electrodes,which in turn limits the catalytic efficiency.Hence,we present a series of Pd-based composites with a strong coupling interface consisting of Pd nanosheets and amorphous Bi(OH)_(3)species.The incorporation of Bi(OH)3 can induce an electron-rich state adjacent to the Pd sites and effectively separate the Pd ensemble,leading to excellent CO tolerance.The optimal Pd-Bi(OH)_(3)NSs catalyst manifests a mass activity of 2.2 A·mgPd^(-1),which is 5.7 and 2.0 times higher than that of Pd NSs and commercial Pd/C catalyst,respectively.Further CO-stripping experiments and CO-DRIFTS tests confirm the excellent CO tolerance on Pd-Bi(OH)3 NSs electrode,leading to the enhanced EOR durability.