Biomass-derived porous carbons have been considered as the most potential candidate for effective CO_(2) adsorbent thanks to being widely-available precursor and having highly porous structure and stable chemical/phys...Biomass-derived porous carbons have been considered as the most potential candidate for effective CO_(2) adsorbent thanks to being widely-available precursor and having highly porous structure and stable chemical/physical features.However,the biomass-derived porous carbons still suffer from the poor optimization process in terms of the synthesis conditions.Herein,we have successfully fabricated coconut shell-derived porous carbon by a simple one-step synthesis process.The as-prepared carbon exhibits advanced textual activity together with well-designed micropore morphology and possesses oxygen-containing functional groups(reached 18.81 wt%)within the carbon matrix.Depending on the different activating temperatures(from 700 to 800℃)and KOH/biomass mass ratios(from 0.3 to 1),the 750℃ and 0.5 mass ratio were found to be enabling the highest CO_(2) capture performance.The optimal adsorbent was achieved a high CO_(2) uptake capacity of 5.92 and 4.15 mmol·g^(−1) at 0 and 25℃(1 bar),respectively.More importantly,as-prepared carbon adsorbent exhibited moderate isosteric heat of adsorption and high CO_(2)/N_(2) selectivity.The results were revealed not only the textural feature but also the surface functional groups critically determine the CO_(2) capture performance,indicating coconut shell-derived porous carbon has a considerable potential as a solid-state adsorbent for the CO_(2) capture.展开更多
基金Financial support was provided by Zhejiang Provincial Natural Science Foundation(Grant No.LY21B070005)National Undergraduate Training Program for Innovation and Entrepreneurship of China and Self designed scientific research project of Zhejiang Normal University(Grant No.2021ZS06)。
文摘Biomass-derived porous carbons have been considered as the most potential candidate for effective CO_(2) adsorbent thanks to being widely-available precursor and having highly porous structure and stable chemical/physical features.However,the biomass-derived porous carbons still suffer from the poor optimization process in terms of the synthesis conditions.Herein,we have successfully fabricated coconut shell-derived porous carbon by a simple one-step synthesis process.The as-prepared carbon exhibits advanced textual activity together with well-designed micropore morphology and possesses oxygen-containing functional groups(reached 18.81 wt%)within the carbon matrix.Depending on the different activating temperatures(from 700 to 800℃)and KOH/biomass mass ratios(from 0.3 to 1),the 750℃ and 0.5 mass ratio were found to be enabling the highest CO_(2) capture performance.The optimal adsorbent was achieved a high CO_(2) uptake capacity of 5.92 and 4.15 mmol·g^(−1) at 0 and 25℃(1 bar),respectively.More importantly,as-prepared carbon adsorbent exhibited moderate isosteric heat of adsorption and high CO_(2)/N_(2) selectivity.The results were revealed not only the textural feature but also the surface functional groups critically determine the CO_(2) capture performance,indicating coconut shell-derived porous carbon has a considerable potential as a solid-state adsorbent for the CO_(2) capture.