针对复杂载体上共形阵列存在多极化接收和遮挡效应的问题,本文提出一种基于方向图矩阵重构导向矢量的改进极化多重信号分类(multiple signal classification,MUSIC)算法。首先对共形天线阵列进行建模,在获取各个阵元的方位和俯仰分量方...针对复杂载体上共形阵列存在多极化接收和遮挡效应的问题,本文提出一种基于方向图矩阵重构导向矢量的改进极化多重信号分类(multiple signal classification,MUSIC)算法。首先对共形天线阵列进行建模,在获取各个阵元的方位和俯仰分量方向图数据后,将方向图数据分解并重构阵列的导向矢量矩阵,最后结合极化MUSIC算法进行波达方向(direction of arrival,DOA)和极化参数联合估计。相对于理论导向矢量的极化MUSIC算法,本文所提改进算法在解决了遮挡效应的同时具有更高的估计精度,并可有效降低运算量。仿真实验结果验证了这一结论。展开更多
This paper studies the dynamic estimation problem for multitarget tracking. A novel gat- ing strategy that is based on the measurement likelihood of the target state space is proposed to improve the overall effectiven...This paper studies the dynamic estimation problem for multitarget tracking. A novel gat- ing strategy that is based on the measurement likelihood of the target state space is proposed to improve the overall effectiveness of the probability hypothesis density (PHD) filter. Firstly, a measurement-driven mechanism based on this gating technique is designed to classify the measure- ments. In this mechanism, only the measurements for the existing targets are considered in the update step of the existing targets while the measurements of newborn targets are used for exploring newborn targets. Secondly, the gating strategy enables the development of a heuristic state estima- tion algorithm when sequential Monte Carlo (SMC) implementation of the PHD filter is investi- gated, where the measurements are used to drive the particle clustering within the space gate. The resulting PHD filter can achieve a more robust and accurate estimation of the existing targets by reducing the interference from clutter. Moreover, the target birth intensity can be adaptive to detect newborn targets, which is in accordance with the birth measurements. Simulation results demonstrate the computational efficiency and tracking performance of the proposed algorithm.展开更多
文摘针对复杂载体上共形阵列存在多极化接收和遮挡效应的问题,本文提出一种基于方向图矩阵重构导向矢量的改进极化多重信号分类(multiple signal classification,MUSIC)算法。首先对共形天线阵列进行建模,在获取各个阵元的方位和俯仰分量方向图数据后,将方向图数据分解并重构阵列的导向矢量矩阵,最后结合极化MUSIC算法进行波达方向(direction of arrival,DOA)和极化参数联合估计。相对于理论导向矢量的极化MUSIC算法,本文所提改进算法在解决了遮挡效应的同时具有更高的估计精度,并可有效降低运算量。仿真实验结果验证了这一结论。
基金supported by the Aeronautical Science Foundation of China(No.201401P6001)
文摘This paper studies the dynamic estimation problem for multitarget tracking. A novel gat- ing strategy that is based on the measurement likelihood of the target state space is proposed to improve the overall effectiveness of the probability hypothesis density (PHD) filter. Firstly, a measurement-driven mechanism based on this gating technique is designed to classify the measure- ments. In this mechanism, only the measurements for the existing targets are considered in the update step of the existing targets while the measurements of newborn targets are used for exploring newborn targets. Secondly, the gating strategy enables the development of a heuristic state estima- tion algorithm when sequential Monte Carlo (SMC) implementation of the PHD filter is investi- gated, where the measurements are used to drive the particle clustering within the space gate. The resulting PHD filter can achieve a more robust and accurate estimation of the existing targets by reducing the interference from clutter. Moreover, the target birth intensity can be adaptive to detect newborn targets, which is in accordance with the birth measurements. Simulation results demonstrate the computational efficiency and tracking performance of the proposed algorithm.