The emergence and prevalence of antibiotic-resistant bacteria demands powerful antibacterial tactics to combat infectious microorganisms.Enhanced combinational therapy based on synergistic hybrid antibacterial materia...The emergence and prevalence of antibiotic-resistant bacteria demands powerful antibacterial tactics to combat infectious microorganisms.Enhanced combinational therapy based on synergistic hybrid antibacterial materials is a promising approach to realize effective sterilization through the rational integration of distinct bactericides into one compact platform.In this work,we constructed a microfiber-based antibacterial platform(PAM-Cl/ZnO MFs)by electrospinning N-halamine polymers(PAM-Cl)loaded with zinc oxide(ZnO)nanoparticles.The as-designed PAM-Cl/ZnO MFs inherited the intrinsic antibacterial effects of both PAM-Cl microfibers(PAM-Cl MFs)and ZnO microfibers(ZnO MFs),and the material exhibited enhanced synergistic antibacterial performance against Staphylococcus aureus(S.aureus)and Escherichia coli(E.coli)in vitro.The bactericidal effect was multimodal and included contact killing based on the N-Cl bond of N-halamine,multiple-release killing,such as reactive oxygen species(ROS)under light irritation,and Zn^(2+)and Cl^(+)acting as antibacterial agents.Importantly,PAM-Cl/Zno MFs worked on inactivate bacteria even under harsh temperatures and atmospheric conditions.Additionally,PAM-Cl/ZnO MFs exhibited good biocompatibility and performed outstanding acceleration of wound healing with in vivo mouse skin defect models using S.aureus.This work advances the design of antibacterial hybrid materials with the potency to eradicate bacteria in biological systems in multiple settings through the superiority of multimodal synergistic therapy.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.21304044,51663019 and 22062017)the Natural Science Foundation of Inner Mongolia Autonomous Region(Nos.2015MS0520 and 2019JQ03)+2 种基金the State Key Laboratory of Medicinal Chemical Biology(Nos.201603006 and 2018051)the State Key Laboratory of Polymer Physics and Chemistry(No.2018-08)the Program of HigherLevel Talents of Inner Mongolia University(No.30105-125136)。
文摘The emergence and prevalence of antibiotic-resistant bacteria demands powerful antibacterial tactics to combat infectious microorganisms.Enhanced combinational therapy based on synergistic hybrid antibacterial materials is a promising approach to realize effective sterilization through the rational integration of distinct bactericides into one compact platform.In this work,we constructed a microfiber-based antibacterial platform(PAM-Cl/ZnO MFs)by electrospinning N-halamine polymers(PAM-Cl)loaded with zinc oxide(ZnO)nanoparticles.The as-designed PAM-Cl/ZnO MFs inherited the intrinsic antibacterial effects of both PAM-Cl microfibers(PAM-Cl MFs)and ZnO microfibers(ZnO MFs),and the material exhibited enhanced synergistic antibacterial performance against Staphylococcus aureus(S.aureus)and Escherichia coli(E.coli)in vitro.The bactericidal effect was multimodal and included contact killing based on the N-Cl bond of N-halamine,multiple-release killing,such as reactive oxygen species(ROS)under light irritation,and Zn^(2+)and Cl^(+)acting as antibacterial agents.Importantly,PAM-Cl/Zno MFs worked on inactivate bacteria even under harsh temperatures and atmospheric conditions.Additionally,PAM-Cl/ZnO MFs exhibited good biocompatibility and performed outstanding acceleration of wound healing with in vivo mouse skin defect models using S.aureus.This work advances the design of antibacterial hybrid materials with the potency to eradicate bacteria in biological systems in multiple settings through the superiority of multimodal synergistic therapy.