期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Microstructure and Mechanical Properties of Al_(2)O_(3)p/AZ91 Magnesium Matrix Laminated Material Adjusted by Freezing Temperature
1
作者 Ze-Xin Bai Kun-Kun Deng +3 位作者 Ze-Qi Du Kai-Bo Nie Chao Xu quan-xin shi 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第11期1819-1829,共11页
The Al_(2)O_(3)laminated preforms with different layers thickness were prepared by freezing casting in present work.Then,the Al_(2)O_(3)p/AZ91 magnesium matrix laminated materials were obtained by infiltrating the AZ9... The Al_(2)O_(3)laminated preforms with different layers thickness were prepared by freezing casting in present work.Then,the Al_(2)O_(3)p/AZ91 magnesium matrix laminated materials were obtained by infiltrating the AZ91 alloy melt into the Al_(2)O_(3)laminated preform based on pressure infiltration process.Subsequently,the influence of freezing temperature on the microstructure,mechanical properties and fracture behavior of magnesium-based laminates was investigated.The results indicated that with the decrease of freezing temperature,the thickness of Al_(2)O_(3)layers decreases gradually,the number of layers increases obviously,and the interlayers spacing decreases.Accompanied with the decrease of interlayers spacing,the size of Mg17Al12 phase precipitated in the AZ91 alloy layers was refined,and the compression strength and strain were both improved obviously.The micro-cracks initiated in Al_(2)O_(3)layers during loading process,while the AZ91 layers could effectively suppress the initiation and propagation of micro-cracks.Furthermore,the changing layers structure influenced by the decrease of freezing temperature had significant inhibiting effect on the initiation and propagation of micro-cracks,which endowed the Al_(2)O_(3)p/AZ91 magnesium matrix laminated materials with better strength and toughness.Notably,the best compression properties of Al_(2)O_(3)p/AZ91 magnesium matrix laminated materials could be obtained at the freezing temperature of−50℃,the compression strength and elastic modulus of which were the 160%and 250%of monolithic AZ91 alloy,respectively. 展开更多
关键词 Bio-inspired composites Freeze-casting Mechanical properties Metal matrix composites
原文传递
Microstructure and mechanical behavior of Mg-5Zn matrix influenced by particle deformation zone 被引量:4
2
作者 quan-xin shi Cui-ju Wang +4 位作者 Kun-kun Deng Kai-bo Nie Yucheng Wu Wei-min Gan Wei Liang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第1期8-20,共13页
The effect of particle deformation zone(PDZ) on the microstructure and mechanical properties of SiC_(p)/Mg-5Zn composites was studied.Meanwhile,the work hardening and so ftening behavior of SiC_(p)/Mg-5Zn composites i... The effect of particle deformation zone(PDZ) on the microstructure and mechanical properties of SiC_(p)/Mg-5Zn composites was studied.Meanwhile,the work hardening and so ftening behavior of SiC_(p)/Mg-5Zn composites influenced by PDZ size were analyzed and discussed using neutron diffraction under in-situ tensile deformation.The evolution of FWHM(full width at half maximum) extracted from the diffraction pattern of SiC_(p)/Mg-5Zn composites was used to interpret the modification of dislocation density during in-situ tension,which discovered the effect of dislocation on the work hardening behavior of SiC_(p)/Mg-5Zn composites.In addition,the tensile stress reduction(△P_i) values during in-situ tension test were calculated to analyze the effect of PDZ size on the softening behavior of SiC_(p)/Mg-5Zn composites.The results show that the work hardening rate of SiC_(p)/Mg-5Zn composites increased with the enlargement of PDZ size,which was attributed to the grain size of SiC_(p)/Mg-5Zn composites increased with the enlargement of PDZ size.Moreover,the stress reduction(△P_i) values increased continuously during in-situ tensile for SiC_(p)/Mg-5Zn composites due to the increased stored energy produced during plastic deformation,which provided a driving force for the softening effect.However,the effect of grain size on the softening behavior is greater than that of the stored energy,which led to the tensile stress reduction(△P_i) values of P30(d_(PDZ)=30 μm)-SiC_(p)/Mg-5Zn composite were higher than that of P60(d_(PDZ)=60 μm)-SiC_(p)/Mg-5Zn composite when the ε_(ri) were 0.25,0.5,0.75 and 1,respectively. 展开更多
关键词 PDZ size SiC_(p)/Mg-5Zn composites Work hardening behavior SOFTENING In-situ tensile Neutron diffraction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部