The Al_(2)O_(3)laminated preforms with different layers thickness were prepared by freezing casting in present work.Then,the Al_(2)O_(3)p/AZ91 magnesium matrix laminated materials were obtained by infiltrating the AZ9...The Al_(2)O_(3)laminated preforms with different layers thickness were prepared by freezing casting in present work.Then,the Al_(2)O_(3)p/AZ91 magnesium matrix laminated materials were obtained by infiltrating the AZ91 alloy melt into the Al_(2)O_(3)laminated preform based on pressure infiltration process.Subsequently,the influence of freezing temperature on the microstructure,mechanical properties and fracture behavior of magnesium-based laminates was investigated.The results indicated that with the decrease of freezing temperature,the thickness of Al_(2)O_(3)layers decreases gradually,the number of layers increases obviously,and the interlayers spacing decreases.Accompanied with the decrease of interlayers spacing,the size of Mg17Al12 phase precipitated in the AZ91 alloy layers was refined,and the compression strength and strain were both improved obviously.The micro-cracks initiated in Al_(2)O_(3)layers during loading process,while the AZ91 layers could effectively suppress the initiation and propagation of micro-cracks.Furthermore,the changing layers structure influenced by the decrease of freezing temperature had significant inhibiting effect on the initiation and propagation of micro-cracks,which endowed the Al_(2)O_(3)p/AZ91 magnesium matrix laminated materials with better strength and toughness.Notably,the best compression properties of Al_(2)O_(3)p/AZ91 magnesium matrix laminated materials could be obtained at the freezing temperature of−50℃,the compression strength and elastic modulus of which were the 160%and 250%of monolithic AZ91 alloy,respectively.展开更多
The effect of particle deformation zone(PDZ) on the microstructure and mechanical properties of SiC_(p)/Mg-5Zn composites was studied.Meanwhile,the work hardening and so ftening behavior of SiC_(p)/Mg-5Zn composites i...The effect of particle deformation zone(PDZ) on the microstructure and mechanical properties of SiC_(p)/Mg-5Zn composites was studied.Meanwhile,the work hardening and so ftening behavior of SiC_(p)/Mg-5Zn composites influenced by PDZ size were analyzed and discussed using neutron diffraction under in-situ tensile deformation.The evolution of FWHM(full width at half maximum) extracted from the diffraction pattern of SiC_(p)/Mg-5Zn composites was used to interpret the modification of dislocation density during in-situ tension,which discovered the effect of dislocation on the work hardening behavior of SiC_(p)/Mg-5Zn composites.In addition,the tensile stress reduction(△P_i) values during in-situ tension test were calculated to analyze the effect of PDZ size on the softening behavior of SiC_(p)/Mg-5Zn composites.The results show that the work hardening rate of SiC_(p)/Mg-5Zn composites increased with the enlargement of PDZ size,which was attributed to the grain size of SiC_(p)/Mg-5Zn composites increased with the enlargement of PDZ size.Moreover,the stress reduction(△P_i) values increased continuously during in-situ tensile for SiC_(p)/Mg-5Zn composites due to the increased stored energy produced during plastic deformation,which provided a driving force for the softening effect.However,the effect of grain size on the softening behavior is greater than that of the stored energy,which led to the tensile stress reduction(△P_i) values of P30(d_(PDZ)=30 μm)-SiC_(p)/Mg-5Zn composite were higher than that of P60(d_(PDZ)=60 μm)-SiC_(p)/Mg-5Zn composite when the ε_(ri) were 0.25,0.5,0.75 and 1,respectively.展开更多
基金supported by the National Key Research and Development Program for Young Scientists(Grant No.2021YFB3703300)the National Natural Science Foundation of China(Grant Nos.52271109 and 52001223)+1 种基金the Major Special Plan for Science and Technology in Shanxi Province(Grant No.202201050201012)the Special Fund Project for Guiding Local Science and Technology Development by the Central Government(Grant No.YDZJSX2021B019)。
文摘The Al_(2)O_(3)laminated preforms with different layers thickness were prepared by freezing casting in present work.Then,the Al_(2)O_(3)p/AZ91 magnesium matrix laminated materials were obtained by infiltrating the AZ91 alloy melt into the Al_(2)O_(3)laminated preform based on pressure infiltration process.Subsequently,the influence of freezing temperature on the microstructure,mechanical properties and fracture behavior of magnesium-based laminates was investigated.The results indicated that with the decrease of freezing temperature,the thickness of Al_(2)O_(3)layers decreases gradually,the number of layers increases obviously,and the interlayers spacing decreases.Accompanied with the decrease of interlayers spacing,the size of Mg17Al12 phase precipitated in the AZ91 alloy layers was refined,and the compression strength and strain were both improved obviously.The micro-cracks initiated in Al_(2)O_(3)layers during loading process,while the AZ91 layers could effectively suppress the initiation and propagation of micro-cracks.Furthermore,the changing layers structure influenced by the decrease of freezing temperature had significant inhibiting effect on the initiation and propagation of micro-cracks,which endowed the Al_(2)O_(3)p/AZ91 magnesium matrix laminated materials with better strength and toughness.Notably,the best compression properties of Al_(2)O_(3)p/AZ91 magnesium matrix laminated materials could be obtained at the freezing temperature of−50℃,the compression strength and elastic modulus of which were the 160%and 250%of monolithic AZ91 alloy,respectively.
基金supported financially by the National Natural Science Foundation of China(Nos.51771128 and 51771129)the Shanxi Province Science and Technology Major Projects(No.20181101008)the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi。
文摘The effect of particle deformation zone(PDZ) on the microstructure and mechanical properties of SiC_(p)/Mg-5Zn composites was studied.Meanwhile,the work hardening and so ftening behavior of SiC_(p)/Mg-5Zn composites influenced by PDZ size were analyzed and discussed using neutron diffraction under in-situ tensile deformation.The evolution of FWHM(full width at half maximum) extracted from the diffraction pattern of SiC_(p)/Mg-5Zn composites was used to interpret the modification of dislocation density during in-situ tension,which discovered the effect of dislocation on the work hardening behavior of SiC_(p)/Mg-5Zn composites.In addition,the tensile stress reduction(△P_i) values during in-situ tension test were calculated to analyze the effect of PDZ size on the softening behavior of SiC_(p)/Mg-5Zn composites.The results show that the work hardening rate of SiC_(p)/Mg-5Zn composites increased with the enlargement of PDZ size,which was attributed to the grain size of SiC_(p)/Mg-5Zn composites increased with the enlargement of PDZ size.Moreover,the stress reduction(△P_i) values increased continuously during in-situ tensile for SiC_(p)/Mg-5Zn composites due to the increased stored energy produced during plastic deformation,which provided a driving force for the softening effect.However,the effect of grain size on the softening behavior is greater than that of the stored energy,which led to the tensile stress reduction(△P_i) values of P30(d_(PDZ)=30 μm)-SiC_(p)/Mg-5Zn composite were higher than that of P60(d_(PDZ)=60 μm)-SiC_(p)/Mg-5Zn composite when the ε_(ri) were 0.25,0.5,0.75 and 1,respectively.