To determine the solubility of CO_(2)in n-dodecane at T=303.15-353.15 K,P≤11.00 MPa,an integrated fused silica capillary and in-situ Raman spectroscopy system was built.The Raman peak intensity ratio(I_(CO_(2))/IC-H)...To determine the solubility of CO_(2)in n-dodecane at T=303.15-353.15 K,P≤11.00 MPa,an integrated fused silica capillary and in-situ Raman spectroscopy system was built.The Raman peak intensity ratio(I_(CO_(2))/IC-H)between the upper band of CO_(2)Fermi diad(I_(CO_(2)))and the C-H stretching band of n-dodecane(IC-H)was employed to determine the solubility of CO_(2)in n-dodecane based on the calibrated correlation equation between the known CO_(2)molality in n-dodecane and the I_(CO_(2))/IC-Hratio with R^(2)=0.9998.The results indicated that the solubility of CO_(2)decreased with increasing temperature and increased with increasing pressure.The maximum CO_(2)molality(30.7314 mol/kg)was obtained at 303.15 K and7.00 MPa.Finally,a solubility prediction model(lnS=(P-A)/B)based on the relationship with temperature(T in K)and pressure(P in MPa)was developed,where S is CO_(2)molality,A=-8×10^(-6)T^(2)+0.0354T-8.1605,and B=0.0405T-10.756.The results indicated that the solubilities of CO_(2)derived from this model were in good agreement with the experimental data.展开更多
基金supported by the National Key Research and Development Program of China(2019YFE0117200)the Natural Science Foundation of China(41977304)
文摘To determine the solubility of CO_(2)in n-dodecane at T=303.15-353.15 K,P≤11.00 MPa,an integrated fused silica capillary and in-situ Raman spectroscopy system was built.The Raman peak intensity ratio(I_(CO_(2))/IC-H)between the upper band of CO_(2)Fermi diad(I_(CO_(2)))and the C-H stretching band of n-dodecane(IC-H)was employed to determine the solubility of CO_(2)in n-dodecane based on the calibrated correlation equation between the known CO_(2)molality in n-dodecane and the I_(CO_(2))/IC-Hratio with R^(2)=0.9998.The results indicated that the solubility of CO_(2)decreased with increasing temperature and increased with increasing pressure.The maximum CO_(2)molality(30.7314 mol/kg)was obtained at 303.15 K and7.00 MPa.Finally,a solubility prediction model(lnS=(P-A)/B)based on the relationship with temperature(T in K)and pressure(P in MPa)was developed,where S is CO_(2)molality,A=-8×10^(-6)T^(2)+0.0354T-8.1605,and B=0.0405T-10.756.The results indicated that the solubilities of CO_(2)derived from this model were in good agreement with the experimental data.