This paper presents the determination of the fuel burnup distribution of the Dalat nuclear research reactor(DNRR) using a method of measurements at subcritical conditions. The method is based on the assumption of line...This paper presents the determination of the fuel burnup distribution of the Dalat nuclear research reactor(DNRR) using a method of measurements at subcritical conditions. The method is based on the assumption of linear dependence of the reactivity on the burnup of fuel bundles and the measurements at subcritical conditions.The measurements were taken for seven selected fuel bundles in two different measuring sequences. The measured burnup values have also been compared with the calculations for verifying the method and the measurement procedure. The results obtained with the three detectors have a good agreement with each other with a discrepancy less than 1.0%. The errors of the measured burnup values are within 6%. Comparison between the calculated and measured burnup values shows that the discrepancy of the C/E ratio is within 9% compared to unity. The results indicate that the method of measurements at subcritical conditions could be well applied to determine the relative burnup distribution of the DNRR.展开更多
基金supported by National Foundation for Science and Technology Development(NAFOSTED)of Vietnam under Grant103.04-2016.30
文摘This paper presents the determination of the fuel burnup distribution of the Dalat nuclear research reactor(DNRR) using a method of measurements at subcritical conditions. The method is based on the assumption of linear dependence of the reactivity on the burnup of fuel bundles and the measurements at subcritical conditions.The measurements were taken for seven selected fuel bundles in two different measuring sequences. The measured burnup values have also been compared with the calculations for verifying the method and the measurement procedure. The results obtained with the three detectors have a good agreement with each other with a discrepancy less than 1.0%. The errors of the measured burnup values are within 6%. Comparison between the calculated and measured burnup values shows that the discrepancy of the C/E ratio is within 9% compared to unity. The results indicate that the method of measurements at subcritical conditions could be well applied to determine the relative burnup distribution of the DNRR.