The structural,electronic,and magnetic properties of the Nd-doped Rare earth aluminate,La1-xNdxAlO3(x = 0%to 100%) alloys are studied using the full potential linearized augmented plane wave(FP-LAPW) method within...The structural,electronic,and magnetic properties of the Nd-doped Rare earth aluminate,La1-xNdxAlO3(x = 0%to 100%) alloys are studied using the full potential linearized augmented plane wave(FP-LAPW) method within the density functional theory.The effects of the Nd substitution in La AlO3 are studied using the supercell calculations.The computed electronic structure with the modified Becke–Johnson(m BJ) potential based approximation indicates that the La1-xNdxAlO3 alloys may possess half-metallic(HM) behaviors when doped with Nd of a finite density of states at the Fermi level(EF).The direct and indirect band gaps are studied each as a function of x which is the concentration of Nddoped La AlO3.The calculated magnetic moments in the La1-xNdxAlO3 alloys are found to arise mainly from the Nd-4f state.A probable half-metallic nature is suggested for each of these systems with supportive integral magnetic moments and highly spin-polarized electronic structures in these doped systems at EF.The observed decrease of the band gap with the increase in the concentration of Nd doping in La AlO3 is a suitable technique for harnessing useful spintronic and magnetic devices.展开更多
We have studied the electronic, magnetic and optical properties of neodymium chalcogenides by performing LSDA+ U and full potential linearized augmented plane wave (FP-LAPW) method. The electronic structure calcula...We have studied the electronic, magnetic and optical properties of neodymium chalcogenides by performing LSDA+ U and full potential linearized augmented plane wave (FP-LAPW) method. The electronic structure calculation shows that the electronic states in Nd-chalcogenides were mainly contributed by Nd-4f electrons near Fermi energy and 3p, 4p and 5p state electrons of X (S, Se and Te), respectively. We have also studied the absorption of light via the imaginary parts of the dielectric function of Nd-chalcogenides.展开更多
基金Project supported by the DST-SERB,Dy(Grant No.SERB/3586/2013-14)the UGCBSR,FRPS(Grant No.F.30-52/2014)+2 种基金the UGC(New Delhi,India)Inspire Fellowship DST(India)the Deanship of Scientific Research at King Saud University(Grant No.RPG-VPP-088)M P Ghimire thanks the Alexander von Humboldt Foundation,Germany for the financial support
文摘The structural,electronic,and magnetic properties of the Nd-doped Rare earth aluminate,La1-xNdxAlO3(x = 0%to 100%) alloys are studied using the full potential linearized augmented plane wave(FP-LAPW) method within the density functional theory.The effects of the Nd substitution in La AlO3 are studied using the supercell calculations.The computed electronic structure with the modified Becke–Johnson(m BJ) potential based approximation indicates that the La1-xNdxAlO3 alloys may possess half-metallic(HM) behaviors when doped with Nd of a finite density of states at the Fermi level(EF).The direct and indirect band gaps are studied each as a function of x which is the concentration of Nddoped La AlO3.The calculated magnetic moments in the La1-xNdxAlO3 alloys are found to arise mainly from the Nd-4f state.A probable half-metallic nature is suggested for each of these systems with supportive integral magnetic moments and highly spin-polarized electronic structures in these doped systems at EF.The observed decrease of the band gap with the increase in the concentration of Nd doping in La AlO3 is a suitable technique for harnessing useful spintronic and magnetic devices.
文摘We have studied the electronic, magnetic and optical properties of neodymium chalcogenides by performing LSDA+ U and full potential linearized augmented plane wave (FP-LAPW) method. The electronic structure calculation shows that the electronic states in Nd-chalcogenides were mainly contributed by Nd-4f electrons near Fermi energy and 3p, 4p and 5p state electrons of X (S, Se and Te), respectively. We have also studied the absorption of light via the imaginary parts of the dielectric function of Nd-chalcogenides.