The search for efficient and versatile structural elements, leads to the fabrication of I-joists (6.5 cm × 18.5 cm × 600 cm (width × depth × length) with glue-laminated bamboo (Guada angustifolia) ...The search for efficient and versatile structural elements, leads to the fabrication of I-joists (6.5 cm × 18.5 cm × 600 cm (width × depth × length) with glue-laminated bamboo (Guada angustifolia) in the flanges and Gmelina arborea 12-mm structural plywood in the web. The results showed a modulus of rupture (MOR) of 39.45 MPa and an effective modulus of elasticity (MOE) of 17.05 GPa. Shearing in the glue line was 5.95 MPa and the lamination strength was 6.45 MPa. Structural design values averaged 9.43 MPa for bending and 4.72 MPa in shear according to Costa Rican structural standards. Both resistance value (flexure and shear) were considered satisfactory for structural proposes and I-joists fabricated with bamboo and G. arborea plywood are comparable with the Andean classification group “C” structural grade. The use of this I-joist was also shown in roofing and flooring systems. This beam can be used in allowable spans from 2 to 4 m in span for flooring systems and from 5 to 7 m for roofing applications.展开更多
Lignocellulosic residues resulting from agricultural activities and urban centers cause pollution. A possible solution to this problem is to combine these residues with woody plants to produce particleboards. The purp...Lignocellulosic residues resulting from agricultural activities and urban centers cause pollution. A possible solution to this problem is to combine these residues with woody plants to produce particleboards. The purpose of this study was to evaluate decay resistance, coating and burning properties and the change of color caused by accelerated weathering of particleboards manufactured with a combination of 3 woody species used for commercial reforestation in tropical areas (Cupressus lusitanica, Gmelina arborea and Tectona grandis), pineapple (Ananas comosus) leaves from the crown and the plant (PL), empty fruit bunch of Elaeis guineensis (EBF) and tetra pak packages (TP). According to the results, the mixtures of T. grandis and EFB were classified as moderately resistant and other mixtures (woody species and PL or TP) were classified as slightly resistant. The finish performance test determined that the mixtures with TP presented the best performance, followed by the mixtures with oil palm components and the mixtures composed of pineapple leaves. Regarding lacquer consumption, no differences were found between the mixtures. The combustion test determined that particleboards with TP and EFB showed the highest resistance to combustion, while pineapple presented the lowest resistances to combustion. In the accelerated weathering exposure test, the mixtures of the three species with TP showed the best performance in accelerated weathering. Contrariwise, the mixtures with pineapple leaves showed the lowest resistance to accelerated weathering. Oil palm particleboards presented lower resistance to weathering than TP, though higher than pineapple leaves’ resistance.展开更多
文摘The search for efficient and versatile structural elements, leads to the fabrication of I-joists (6.5 cm × 18.5 cm × 600 cm (width × depth × length) with glue-laminated bamboo (Guada angustifolia) in the flanges and Gmelina arborea 12-mm structural plywood in the web. The results showed a modulus of rupture (MOR) of 39.45 MPa and an effective modulus of elasticity (MOE) of 17.05 GPa. Shearing in the glue line was 5.95 MPa and the lamination strength was 6.45 MPa. Structural design values averaged 9.43 MPa for bending and 4.72 MPa in shear according to Costa Rican structural standards. Both resistance value (flexure and shear) were considered satisfactory for structural proposes and I-joists fabricated with bamboo and G. arborea plywood are comparable with the Andean classification group “C” structural grade. The use of this I-joist was also shown in roofing and flooring systems. This beam can be used in allowable spans from 2 to 4 m in span for flooring systems and from 5 to 7 m for roofing applications.
文摘Lignocellulosic residues resulting from agricultural activities and urban centers cause pollution. A possible solution to this problem is to combine these residues with woody plants to produce particleboards. The purpose of this study was to evaluate decay resistance, coating and burning properties and the change of color caused by accelerated weathering of particleboards manufactured with a combination of 3 woody species used for commercial reforestation in tropical areas (Cupressus lusitanica, Gmelina arborea and Tectona grandis), pineapple (Ananas comosus) leaves from the crown and the plant (PL), empty fruit bunch of Elaeis guineensis (EBF) and tetra pak packages (TP). According to the results, the mixtures of T. grandis and EFB were classified as moderately resistant and other mixtures (woody species and PL or TP) were classified as slightly resistant. The finish performance test determined that the mixtures with TP presented the best performance, followed by the mixtures with oil palm components and the mixtures composed of pineapple leaves. Regarding lacquer consumption, no differences were found between the mixtures. The combustion test determined that particleboards with TP and EFB showed the highest resistance to combustion, while pineapple presented the lowest resistances to combustion. In the accelerated weathering exposure test, the mixtures of the three species with TP showed the best performance in accelerated weathering. Contrariwise, the mixtures with pineapple leaves showed the lowest resistance to accelerated weathering. Oil palm particleboards presented lower resistance to weathering than TP, though higher than pineapple leaves’ resistance.