It is noted that necessity of further increase of accuracy of GPS positioning systems requires de-velopment of more perfect methods to compensate information losses occurred due to residual ionospheric delay by using ...It is noted that necessity of further increase of accuracy of GPS positioning systems requires de-velopment of more perfect methods to compensate information losses occurred due to residual ionospheric delay by using optimization procedures. According to the conditions of formulated optimization task, the signal/noise ratio in measurements of zenith wet delay depends on the second order ionospheric errors, geographic latitude and day of year. At the same time if we assume that the number of measurements at the fixed geographic site is proportional to geographic latitude and if we accept existence of only two antiphase scenarios for variation of residual ionospheric delay on latitude normed by their specific constant, there should be optimum functional dependence of precipitated water on latitude upon which the quantity of measuring information reaches the maximum. The mathematical grounding of solution of formulated optimization task is given.展开更多
文摘It is noted that necessity of further increase of accuracy of GPS positioning systems requires de-velopment of more perfect methods to compensate information losses occurred due to residual ionospheric delay by using optimization procedures. According to the conditions of formulated optimization task, the signal/noise ratio in measurements of zenith wet delay depends on the second order ionospheric errors, geographic latitude and day of year. At the same time if we assume that the number of measurements at the fixed geographic site is proportional to geographic latitude and if we accept existence of only two antiphase scenarios for variation of residual ionospheric delay on latitude normed by their specific constant, there should be optimum functional dependence of precipitated water on latitude upon which the quantity of measuring information reaches the maximum. The mathematical grounding of solution of formulated optimization task is given.