Epoxy glass fiber laminate composite (PMCs) are finding ever increasing applications in aerospace and automobile industries due to its high strength to weight ratio and resistance to aqueous environment. Additions of ...Epoxy glass fiber laminate composite (PMCs) are finding ever increasing applications in aerospace and automobile industries due to its high strength to weight ratio and resistance to aqueous environment. Additions of particulate reinforcements in the polymer matrix are reported to improve the Interlaminar Shear Strength and Interlaminar Fracture Toughness of the composites. In the present investigation, epoxy glass fiber laminate composites were processed using hand layup and vacuum bagging technique. The particulate reinforcement precipitator fly ash (25 - 45 μm) was added in the epoxy matrix by mechanical mixing up to 10 wt%. The effects of fly ash reinforcement on the mechanical properties and Interlaminar Fracture Toughness were studied before and after exposure to aqueous fog in a salt fog chamber at 45°C. In unexposed condition Mode I interlaminar fracture toughness of epoxy glass fiber laminate composite improved by the addition of fly ash reinforcement 10% (By weight) by 49.43% and when it was subjected to aqueous fog for 10 days the interlaminar fracture toughness improved 58.42%. Exposure to aqueous fog for 10 days causes plasticization of resin matrix and weakening of fiber/matrix interface results in improvement in interlaminar fracture toughness. The fracture surfaces were analyzed using scanning electron microscopy.展开更多
文摘Epoxy glass fiber laminate composite (PMCs) are finding ever increasing applications in aerospace and automobile industries due to its high strength to weight ratio and resistance to aqueous environment. Additions of particulate reinforcements in the polymer matrix are reported to improve the Interlaminar Shear Strength and Interlaminar Fracture Toughness of the composites. In the present investigation, epoxy glass fiber laminate composites were processed using hand layup and vacuum bagging technique. The particulate reinforcement precipitator fly ash (25 - 45 μm) was added in the epoxy matrix by mechanical mixing up to 10 wt%. The effects of fly ash reinforcement on the mechanical properties and Interlaminar Fracture Toughness were studied before and after exposure to aqueous fog in a salt fog chamber at 45°C. In unexposed condition Mode I interlaminar fracture toughness of epoxy glass fiber laminate composite improved by the addition of fly ash reinforcement 10% (By weight) by 49.43% and when it was subjected to aqueous fog for 10 days the interlaminar fracture toughness improved 58.42%. Exposure to aqueous fog for 10 days causes plasticization of resin matrix and weakening of fiber/matrix interface results in improvement in interlaminar fracture toughness. The fracture surfaces were analyzed using scanning electron microscopy.