期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Seasonal Development of Microbial Activity in Soils of Northern Norway 被引量:15
1
作者 M. BLTEr N. SOETHE +1 位作者 r. horn C. UHLIG 《Pedosphere》 SCIE CAS CSCD 2005年第6期716-727,共12页
Seasonal development of soil microbial activity and bacterial biomass in sub-polar regions was investigated to determine the impacts of biotic and abiotic factors, such as organic matter content, temperature and moist... Seasonal development of soil microbial activity and bacterial biomass in sub-polar regions was investigated to determine the impacts of biotic and abiotic factors, such as organic matter content, temperature and moisture. The study was performed during spring thaw from three cultivated meadows and two non-cultivated forest sites near Alta, in northern Norway. Samples from all five sites showed increasing respiration rates directly after the spring thaw with soil respiration activity best related to soil organic matter content. However, distributions of bacteria] biomass showed fewer similarities to these two parameters. This could be explained by variations of litter exploitation through the biomass. Microbial activity started immediately after the thaw while root growth had a longer time lag. An influence of root development on soil microbes was proposed for sites where microorganisms and roots had a tight relationship caused by a more intensive root structure. Also a reduction of microbial activity due to soil compaction in the samples from a wheel track could not be observed under laboratory conditions. New methodological approaches of differential staining for live and dead organisms were applied in order to follow changes within the microbial community. Under laboratory conditions freeze and thaw cycles showed a damaging influence on parts of the soil bacteria. Additionally, different patterns for active vs. non-active bacteria were noticeable after freeze-thaw cycles. 展开更多
关键词 挪威 土壤 微生物 季节变化 细菌 压实作用
下载PDF
Soil Wettability as Affected by Soil Characteristics and Land Use 被引量:6
2
作者 r. horn 《Pedosphere》 SCIE CAS CSCD 2010年第1期43-54,共12页
Depth distribution of soil wettability and its correlations with vegetation type, soil texture, and pH were investigated under various land use (cropland, grassland, and forestland) and soil management systems. Wettab... Depth distribution of soil wettability and its correlations with vegetation type, soil texture, and pH were investigated under various land use (cropland, grassland, and forestland) and soil management systems. Wettability was evaluated by contact angle with the Wilhelmy plate method. Water repellency was likely to be present under permanently vegetated land, but less common on tilled agricultural land. It was mostly prevalent in the topsoil, especially in coarse-textured soils, and decreased in the subsoil. However, the depth dependency of wettability could not be derived from the investigated wide range of soils. The correlation and multiple regression analysis revealed that the wettability in repellent soils was affected more by soil organic carbon (SOC) than by soil texture and pH, whereas in wettable soils, soil texture and pH were more effective than SOC. Furthermore, the quality of SOC seemed to be more important in determining wettability than its quantity, as proofed by stronger hydrophobicity under coniferous than under deciduous forestland. Soil management had a minor effect on wettability if conventional and conservation tillage or different grazing intensities were considered. 展开更多
关键词 土壤特性 土地使用 润湿性 土壤管理制度 土壤质地 多元回归分析 土壤有机碳 保护性耕作
下载PDF
Soil Strength Characteristics Along an Arable Eroded Slope 被引量:6
3
作者 PENG Xin-Hua ZHANG Bin +1 位作者 ZHAO Qi-Guo r. horn 《Pedosphere》 SCIE CAS CSCD 2005年第6期739-745,共7页
Undisturbed soil cores were taken from different slope positions (upslope, backslope and footslope) and soil depths (0-15, 20-35 and 100-115 cm) in a soil catena derived from Quaternary red clay to determine the spati... Undisturbed soil cores were taken from different slope positions (upslope, backslope and footslope) and soil depths (0-15, 20-35 and 100-115 cm) in a soil catena derived from Quaternary red clay to determine the spatial changes in soil strength along the eroded slope and to evaluate an indicator to determine soil strength during compaction. Precompression stress, as an indicator of soil strength, significantly increased from topsoil layer to subsoil layer (P < 0.05) and was affected by slope position. In the subsoil layer (20-35 cm), the precompression stress at the footslope position was significantly greater than at the backslope and upslope positions (P < 0.05), while there were no significant differences at 0-15 and 100-115 cm. Precompression stress followed the spatial variation of soil clay content with soil depth and had a significant linear relationship with soil porosity (r2 = 0.40, P < 0.01). Also, soil cohesion increased with increasing soil clay content. The precompression stress was significantly related to the applied stress corresponding to the highest change of pore water pressure (r2 = 0.69, P < 0.01). These results suggested that soil strength induced by soil erosion and soil management varied spatially along the slope and the maximum change in pore water pressure during compaction could be an easy indicator to describe soil strength. 展开更多
关键词 土壤侵蚀 保水力 孔隙水压 土壤退化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部