Time domain dynamic analysis of inclined dam-reservoir-foundation interaction was conducted using finite difference method (FDM). The Timoshenko beam theory and the Euler-Bemoulli beam theory were implemented to dra...Time domain dynamic analysis of inclined dam-reservoir-foundation interaction was conducted using finite difference method (FDM). The Timoshenko beam theory and the Euler-Bemoulli beam theory were implemented to draw out governing equation of beam. The interactions between the dam and the soil were modeled by using a translational spring and a rotational spring. A Sommerfeld's radiation condition at the infinity boundary of the fluid domain was adopted. The effects of the reservoir bottom absorption and surface waves on the dam-reservoir-foundation interaction due to the earthquake were studied. To avoid the instability of solution, a semi-implicit scheme was used for the discretization of the governing equation of dam and an explicit scheme was used for the discretization of the governing equation of fluid. The results show that as the slope of upstream dam increases, the hydrodynamic pressure on the dam is reduced. Moreover, when the Timoshenko beam theory is used, the system response increases.展开更多
文摘Time domain dynamic analysis of inclined dam-reservoir-foundation interaction was conducted using finite difference method (FDM). The Timoshenko beam theory and the Euler-Bemoulli beam theory were implemented to draw out governing equation of beam. The interactions between the dam and the soil were modeled by using a translational spring and a rotational spring. A Sommerfeld's radiation condition at the infinity boundary of the fluid domain was adopted. The effects of the reservoir bottom absorption and surface waves on the dam-reservoir-foundation interaction due to the earthquake were studied. To avoid the instability of solution, a semi-implicit scheme was used for the discretization of the governing equation of dam and an explicit scheme was used for the discretization of the governing equation of fluid. The results show that as the slope of upstream dam increases, the hydrodynamic pressure on the dam is reduced. Moreover, when the Timoshenko beam theory is used, the system response increases.