期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A rational preparation strategy of phase tuned MoO_(3) nanostructures for high-performance all-solid asymmetric supercapacitor 被引量:1
1
作者 M.Kundu D.Mondal +7 位作者 I.Mondal A.Baral P.Halder S.Biswas B.K.Paul N.Bose r.basu S.Das 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期192-206,I0006,共16页
In this work,phase and morphology-tuned MoO_(3) nanostructures are synthesized through a novel modified co-precipitation method,and their electrochemical properties are investigated.For the first time,such a simple su... In this work,phase and morphology-tuned MoO_(3) nanostructures are synthesized through a novel modified co-precipitation method,and their electrochemical properties are investigated.For the first time,such a simple surfactant-assisted synthesis process aided by minor temperature variations is reported which results in phase transition of the nanoparticles from h-MoO_(3) nano-rods to a-MoO_(3) nano-flakes.The nanostructures thus developed are highly porous and crystalline with significantly large specific surface area as compared to previous literature.The theoretical bandgap energy of the optimized sample calculated using Perdew-Zunger local density approximation(LDA) is in good agreement with the experimental findings.An overall structural,morphological,and surface-behavioural analysis predicts the electrochemical superiority in 2D a-MoO_(3).The cyclic voltammetry and galvano-potentiometry measurements of 2D a-MoO_(3) in the potential window of-0.6 V to +0.2 V present the highest pseudosupercapacitive response with a maximum specific capacitance of 829 F g^(-1)at 2 A g^(-1)as compared to h-MoO_(3) (452 F g^(-1)) and h@a-MoO_(3) (783 F g^(-1)).Thus,the MoO_(3) 2D nanostructures synthesized through our novel synthesis technique display excellent specific capacitance as compared to previous reported data.Additionally,a-MoO_(3) exhibits a galvanostatic charging-discharging cyclic stability of about 91%after 2000 cycles,indicating that it can serve as an excellent electrode material for supercapacitors.A solid-state asymmetric supercapacitor device is successfully constructed using a-MoO_(3) which can light up 4 red LEDs for 10 s.The specific energy density of the device reaches a maximum value of 36.3 W h kg^(-1)at the power density of 50 W kg^(-1). 展开更多
关键词 MoO_(3)nanoparticles Asymmetric solid-state supercapacitor Electrochemical performance Low-temperature novel synthesis technique Density functional calculations
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部