Four different varieties of charnockitic rocks, with different modes of formation, from the Mesoproterozoic Natal belt are described and new C isotope data presented. Excellent coastal exposures in a number of quarrie...Four different varieties of charnockitic rocks, with different modes of formation, from the Mesoproterozoic Natal belt are described and new C isotope data presented. Excellent coastal exposures in a number of quarries and river sections make this part of the Natal belt a good location for observing charnockitic field relationships. Whereas there has been much debate on genesis of charnockites and the use of the term charnockite, it is generally recognized that the stabilization of orthopyroxene relative to biotite in granitoid rocks is a function of low aH2O (-- high CO2), high temperature, and composition (especially Fe/(Fe +Mg)). From the Natal belt exposures, it is evident that syn-emplacement, magmatic crystallization of charnockite can arise from mantle-derived differentiated melts that are inherently hot and dry (as in the Oribi Gorge granites and Munster enderbite), as well as from wet granitic melts that have been affected through interaction with dry country rock to produce localized charnockitic marginal facies in plutons (as in the Portobello Granite). Two varieties of post-emplacement sub-solidus charnock- ites are also evident. These include charnockitic aureoles developed in leucocratic, biotite, garnet granite adjacent to cross-cutting enderbitic veins that are attributed to metamorphic-metasomatic processes (as in the Nicholson's Point granite, a part of the Margate Granite Suite), as well as nebulous, patchy charnocki- tic veins in the Margate Granite that are attributed to anatectic metamorphic processes under low-aH2O fluid conditions during a metamorphic event. These varieties of charnockite show that the required physical conditions of their genesis can be achieved through a number of geological processes, providing some important implications for the classification of charnockites, and for the interpretation of charnock- ite genesis in areas where poor exposure obscures field relationships.展开更多
A study of the NW Kakamas Domain in South Africa/Namibia provides a new,unified lithostratigraphy and evolutionary history applicable to the whole Namaqua Sector.The Mesoproterozoic history ranges from~1350 Ma to 960 ...A study of the NW Kakamas Domain in South Africa/Namibia provides a new,unified lithostratigraphy and evolutionary history applicable to the whole Namaqua Sector.The Mesoproterozoic history ranges from~1350 Ma to 960 Ma,but isotopic evidence suggests it was built upon pre-existing Paleoproterozoic continental crust that extended west from the Archaean Craton.In eastern Namaqualand,early rift-related magmatism and sedimentation at~1350 Ma occurred in a confined ocean basin.Subsequent tectonic reversal and subduction at~1290–1240 Ma led to establishment of the Areachap,Konkiep and Kaaien Domains.In the Kakamas Domain,widespread deposition of pelitic sediments occurred at~1220 Ma(Narries Group).These contain detrital zircons derived from proximal crust with ages between~2020 Ma and 1800 Ma(western Palaeoproterozoic domains)and 1350–1240 Ma(eastern early Namaqua domains),suggesting pre-sedimentation juxtaposition.The pelites underwent granulite grade metamorphism at~1210 Ma(peak conditions:4.5–6 kbar and 770–850°C),associated with voluminous,predominantly S-type granitoid orthogneisses between~1210 Ma and 1190 Ma(Eendoorn and Ham River Suites)and low-angle ductile(D_(2))deformation which continued until~1110 Ma,interspersed with periods of sedimentation.This enduring P-T regime is inconsistent with the expected crustal over-thickening associated with the generally-accepted collision-accretion Namaqualand model.Rather,we propose the Namaqua Sector is a‘hot orogen’developed in a wide continental back-arc with subduction west of the present-day outcrop.The observed high geotherm resulted from thinned back-arc lithosphere accompanied by an influx of mantle-derived melts.Ductile D_(2)deformation resulted from"bottom-driven"tectonics and viscous drag within the crust by convective flow in the underlying asthenospheric mantle.This extended tectonothermal regime ceased at~1110 Ma when SW-directed thrusting stacked the Namaqua Domains into their current positions,constrained in the Kakamas Domain by late-to post-tectonic I-type granitoids intruded between~1125 Ma and 1100 Ma(Komsberg Suite).The thermal peak then shifted west to the Bushmanland and Aus Domains,where voluminous granites(1080–1025 Ma)were associated with high-T/low-P granulite facies thermal metamorphism and mega-scale open folding(D_(3)).Unroofing of the Namaqua Sector is marked by large-scale,NW-trending,sub-vertical transcurrent dextral shear zones and associated pegmatites and leucogranites at~990 Ma.展开更多
文摘Four different varieties of charnockitic rocks, with different modes of formation, from the Mesoproterozoic Natal belt are described and new C isotope data presented. Excellent coastal exposures in a number of quarries and river sections make this part of the Natal belt a good location for observing charnockitic field relationships. Whereas there has been much debate on genesis of charnockites and the use of the term charnockite, it is generally recognized that the stabilization of orthopyroxene relative to biotite in granitoid rocks is a function of low aH2O (-- high CO2), high temperature, and composition (especially Fe/(Fe +Mg)). From the Natal belt exposures, it is evident that syn-emplacement, magmatic crystallization of charnockite can arise from mantle-derived differentiated melts that are inherently hot and dry (as in the Oribi Gorge granites and Munster enderbite), as well as from wet granitic melts that have been affected through interaction with dry country rock to produce localized charnockitic marginal facies in plutons (as in the Portobello Granite). Two varieties of post-emplacement sub-solidus charnock- ites are also evident. These include charnockitic aureoles developed in leucocratic, biotite, garnet granite adjacent to cross-cutting enderbitic veins that are attributed to metamorphic-metasomatic processes (as in the Nicholson's Point granite, a part of the Margate Granite Suite), as well as nebulous, patchy charnocki- tic veins in the Margate Granite that are attributed to anatectic metamorphic processes under low-aH2O fluid conditions during a metamorphic event. These varieties of charnockite show that the required physical conditions of their genesis can be achieved through a number of geological processes, providing some important implications for the classification of charnockites, and for the interpretation of charnock- ite genesis in areas where poor exposure obscures field relationships.
基金the Ministry of Mines and Energy of Namibia for providing the financial support。
文摘A study of the NW Kakamas Domain in South Africa/Namibia provides a new,unified lithostratigraphy and evolutionary history applicable to the whole Namaqua Sector.The Mesoproterozoic history ranges from~1350 Ma to 960 Ma,but isotopic evidence suggests it was built upon pre-existing Paleoproterozoic continental crust that extended west from the Archaean Craton.In eastern Namaqualand,early rift-related magmatism and sedimentation at~1350 Ma occurred in a confined ocean basin.Subsequent tectonic reversal and subduction at~1290–1240 Ma led to establishment of the Areachap,Konkiep and Kaaien Domains.In the Kakamas Domain,widespread deposition of pelitic sediments occurred at~1220 Ma(Narries Group).These contain detrital zircons derived from proximal crust with ages between~2020 Ma and 1800 Ma(western Palaeoproterozoic domains)and 1350–1240 Ma(eastern early Namaqua domains),suggesting pre-sedimentation juxtaposition.The pelites underwent granulite grade metamorphism at~1210 Ma(peak conditions:4.5–6 kbar and 770–850°C),associated with voluminous,predominantly S-type granitoid orthogneisses between~1210 Ma and 1190 Ma(Eendoorn and Ham River Suites)and low-angle ductile(D_(2))deformation which continued until~1110 Ma,interspersed with periods of sedimentation.This enduring P-T regime is inconsistent with the expected crustal over-thickening associated with the generally-accepted collision-accretion Namaqualand model.Rather,we propose the Namaqua Sector is a‘hot orogen’developed in a wide continental back-arc with subduction west of the present-day outcrop.The observed high geotherm resulted from thinned back-arc lithosphere accompanied by an influx of mantle-derived melts.Ductile D_(2)deformation resulted from"bottom-driven"tectonics and viscous drag within the crust by convective flow in the underlying asthenospheric mantle.This extended tectonothermal regime ceased at~1110 Ma when SW-directed thrusting stacked the Namaqua Domains into their current positions,constrained in the Kakamas Domain by late-to post-tectonic I-type granitoids intruded between~1125 Ma and 1100 Ma(Komsberg Suite).The thermal peak then shifted west to the Bushmanland and Aus Domains,where voluminous granites(1080–1025 Ma)were associated with high-T/low-P granulite facies thermal metamorphism and mega-scale open folding(D_(3)).Unroofing of the Namaqua Sector is marked by large-scale,NW-trending,sub-vertical transcurrent dextral shear zones and associated pegmatites and leucogranites at~990 Ma.