期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
大陆裂谷中断层的演化:北贝加尔盆地西南端构造地貌证据 被引量:2
1
作者 V.D.Mats r.m.lobatskaya O.M.Khlystov 《地学前缘》 EI CAS CSCD 北大核心 2007年第1期207-219,共13页
北贝加尔盆地西南端位于贝加尔盆地中部,包括Olkhon岛及其邻区,文中研究了这个区域的构造地貌格架。北贝加尔盆地西南端的构造地貌类型是由走滑构造末端的一系列雁列构造、裂谷断层及次级断层的末端复合构造控制。朝着海的方向Olkhon地... 北贝加尔盆地西南端位于贝加尔盆地中部,包括Olkhon岛及其邻区,文中研究了这个区域的构造地貌格架。北贝加尔盆地西南端的构造地貌类型是由走滑构造末端的一系列雁列构造、裂谷断层及次级断层的末端复合构造控制。朝着海的方向Olkhon地区次级断层包括4个连续的末端复合构造Primorsky断层带,Buguldeika-Chernorud地堑—MaloyeMore裂谷盆地—Ushkaniy断层带,Tazheran高原—Olkhon岛鞍部和淹没的Akademichesky山脊,Olkhon断层带。这个末端构造被横向断层切为几段,其活动时间在南西最年轻,向北东逐渐加大,同时断层垂直断距从数十米增至2000余米,且断层带变得更为宽阔,也更为复杂。Pri-morsky断层带向北东从西南端简单的线性断层崖,变为断层围限的断块系统,再变为上升和沉降(盆地)块体系统,并最终汇入一个盆地之中;沿着这个方向裂谷边界断层则突然地复合于盆地构造中。这种构造地貌类型记录了断层演化的时间和空间关系,即从属于递进的沉降和加宽直至最终发育为盆地。因此其趋势是发育完好的湖盆、陆地构造直至被水淹没。陆地构造淹没趋势及没有断层围限块体的盆内构造组合可能是与犁式断层旋转相关的陆内裂谷的共同特点,并具一般裂谷的打开机制。 展开更多
关键词 大陆裂谷 贝加尔盆地 断层带和盆地的构造地貌
下载PDF
Finite-element 3D modeling of stress patterns around a dipping fault 被引量:1
2
作者 r.m.lobatskaya I.P.Strelchenko E.S.Dolgikh 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第5期1555-1563,共9页
Stresses in a block around a dipping fracture simulating a damage zone of a fault are reconstructed by finite-element modeling. A fracture corresponding to a fault of different lengths, with its plane dipping at diffe... Stresses in a block around a dipping fracture simulating a damage zone of a fault are reconstructed by finite-element modeling. A fracture corresponding to a fault of different lengths, with its plane dipping at different angles, is assumed to follow a lithological interface and to experience either compression or shear. The stress associated with the destruction shows an asymmetrical pattern with different distances from the highest stress sites to the fault plane in the hanging and foot walls. As the dip angle decreases,the high-stress zone becomes wider in the hanging wall but its width changes negligibly in the foot wall.The length of the simulated fault and the deformation type affect only the magnitude of maximum stress,which remains asymmetrical relative to the fault plane. The Lh/Lfratio, where Lhand Lfare the widths of high-stress zones in the hanging and foot walls of the fault, respectively, is inversely proportional to the fault plane dip. The arithmetic mean of this ratio over different fault lengths in fractures subject to compression changes from 0.29 at a dip of 80°to 1.67 at 30°. In the case of shift displacement, ratios are increasing to 1.2 and 2.94, respectively.Usually they consider vertical fault planes and symmetry in a damage zone of faults. Following that assumption may cause errors in reconstructions of stress and fault patterns in areas of complex structural setting. According geological data, we know the structures are different and asymmetric in hanging and foot walls of fault. Thus, it is important to quantify zones of that asymmetry. The modeling results have to be taken into account in studies of natural faults, especially for practical applications in seismic risk mapping, engineering geology, hydrogeology, and tectonics. 展开更多
关键词 STRESS FAULT FINITE-ELEMENT modeling ANSYS PACKAGE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部