期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Automated Brain Tumor Diagnosis Using Deep Residual U-Net Segmentation Model 被引量:1
1
作者 r.poonguzhali Sultan Ahmad +4 位作者 P.Thiruvannamalai Sivasankar S.Anantha Babu Pranav Joshi Gyanendra Prasad Joshi Sung Won Kim 《Computers, Materials & Continua》 SCIE EI 2023年第1期2179-2194,共16页
Automated segmentation and classification of biomedical images act as a vital part of the diagnosis of brain tumors(BT).A primary tumor brain analysis suggests a quicker response from treatment that utilizes for impro... Automated segmentation and classification of biomedical images act as a vital part of the diagnosis of brain tumors(BT).A primary tumor brain analysis suggests a quicker response from treatment that utilizes for improving patient survival rate.The location and classification of BTs from huge medicinal images database,obtained from routine medical tasks with manual processes are a higher cost together in effort and time.An automatic recognition,place,and classifier process was desired and useful.This study introduces anAutomatedDeepResidualU-Net Segmentation with Classification model(ADRU-SCM)for Brain Tumor Diagnosis.The presentedADRUSCM model majorly focuses on the segmentation and classification of BT.To accomplish this,the presented ADRU-SCM model involves wiener filtering(WF)based preprocessing to eradicate the noise that exists in it.In addition,the ADRU-SCM model follows deep residual U-Net segmentation model to determine the affected brain regions.Moreover,VGG-19 model is exploited as a feature extractor.Finally,tunicate swarm optimization(TSO)with gated recurrent unit(GRU)model is applied as a classification model and the TSO algorithm effectually tunes theGRUhyperparameters.The performance validation of the ADRU-SCM model was tested utilizing FigShare dataset and the outcomes pointed out the better performance of the ADRU-SCM approach on recent approaches. 展开更多
关键词 Brain tumor diagnosis image classification biomedical images image segmentation deep learning
下载PDF
Robust Deep Transfer Learning Based Object Detection and Tracking Approach
2
作者 C.Narmadha T.Kavitha +4 位作者 r.poonguzhali V.Hamsadhwani Ranjan walia Monia B.Jegajothi 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3613-3626,共14页
At present days,object detection and tracking concepts have gained more importance among researchers and business people.Presently,deep learning(DL)approaches have been used for object tracking as it increases the per... At present days,object detection and tracking concepts have gained more importance among researchers and business people.Presently,deep learning(DL)approaches have been used for object tracking as it increases the perfor-mance and speed of the tracking process.This paper presents a novel robust DL based object detection and tracking algorithm using Automated Image Anno-tation with ResNet based Faster regional convolutional neural network(R-CNN)named(AIA-FRCNN)model.The AIA-RFRCNN method performs image anno-tation using a Discriminative Correlation Filter(DCF)with Channel and Spatial Reliability tracker(CSR)called DCF-CSRT model.The AIA-RFRCNN model makes use of Faster RCNN as an object detector and tracker,which involves region proposal network(RPN)and Fast R-CNN.The RPN is a full convolution network that concurrently predicts the bounding box and score of different objects.The RPN is a trained model used for the generation of the high-quality region proposals,which are utilized by Fast R-CNN for detection process.Besides,Residual Network(ResNet 101)model is used as a shared convolutional neural network(CNN)for the generation of feature maps.The performance of the ResNet 101 model is further improved by the use of Adam optimizer,which tunes the hyperparameters namely learning rate,batch size,momentum,and weight decay.Finally,softmax layer is applied to classify the images.The performance of the AIA-RFRCNN method has been assessed using a benchmark dataset and a detailed comparative analysis of the results takes place.The outcome of the experiments indicated the superior characteristics of the AIA-RFRCNN model under diverse aspects. 展开更多
关键词 Object detection TRACKING deep learning deep transfer learning image annotation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部