期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Artificial Intelligence-Enabled Cooperative Cluster-Based Data Collection for Unmanned Aerial Vehicles 被引量:1
1
作者 r.rajender C.S.S.Anupama +3 位作者 G.Jose Moses E.Laxmi Lydia Seifedine Kadry Sangsoon Lim 《Computers, Materials & Continua》 SCIE EI 2022年第11期3351-3365,共15页
In recent times,sixth generation(6G)communication technologies have become a hot research topic because of maximum throughput and low delay services for mobile users.It encompasses several heterogeneous resource and c... In recent times,sixth generation(6G)communication technologies have become a hot research topic because of maximum throughput and low delay services for mobile users.It encompasses several heterogeneous resource and communication standard in ensuring incessant availability of service.At the same time,the development of 6G enables the Unmanned Aerial Vehicles(UAVs)in offering cost and time-efficient solution to several applications like healthcare,surveillance,disaster management,etc.In UAV networks,energy efficiency and data collection are considered the major process for high quality network communication.But these procedures are found to be challenging because of maximum mobility,unstable links,dynamic topology,and energy restricted UAVs.These issues are solved by the use of artificial intelligence(AI)and energy efficient clustering techniques for UAVs in the 6G environment.With this inspiration,this work designs an artificial intelligence enabled cooperative cluster-based data collection technique for unmanned aerial vehicles(AECCDC-UAV)in 6G environment.The proposed AECCDC-UAV technique purposes for dividing the UAV network as to different clusters and allocate a cluster head(CH)to each cluster in such a way that the energy consumption(ECM)gets minimized.The presented AECCDC-UAV technique involves a quasi-oppositional shuffled shepherd optimization(QOSSO)algorithm for selecting the CHs and construct clusters.The QOSSO algorithm derives a fitness function involving three input parameters residual energy of UAVs,distance to neighboring UAVs,and degree of UAVs.The performance of the AECCDC-UAV technique is validated in many aspects and the obtained experimental values demonstration promising results over the recent state of art methods. 展开更多
关键词 6G unmanned aerial vehicles resource allocation energy efficiency artificial intelligence CLUSTERING data collection
下载PDF
Optimal Deep Canonically Correlated Autoencoder-Enabled Prediction Model for Customer Churn Prediction
2
作者 Olfat M.Mirza GJose Moses +4 位作者 r.rajender E.Laxmi Lydia Seifedine Kadry Cheadchai Me-Ead Orawit Thinnukool 《Computers, Materials & Continua》 SCIE EI 2022年第11期3757-3769,共13页
Presently,customer retention is essential for reducing customer churn in telecommunication industry.Customer churn prediction(CCP)is important to predict the possibility of customer retention in the quality of service... Presently,customer retention is essential for reducing customer churn in telecommunication industry.Customer churn prediction(CCP)is important to predict the possibility of customer retention in the quality of services.Since risks of customer churn also get essential,the rise of machine learning(ML)models can be employed to investigate the characteristics of customer behavior.Besides,deep learning(DL)models help in prediction of the customer behavior based characteristic data.Since the DL models necessitate hyperparameter modelling and effort,the process is difficult for research communities and business people.In this view,this study designs an optimal deep canonically correlated autoencoder based prediction(ODCCAEP)model for competitive customer dependent application sector.In addition,the O-DCCAEP method purposes for determining the churning nature of the customers.The O-DCCAEP technique encompasses preprocessing,classification,and hyperparameter optimization.Additionally,the DCCAE model is employed to classify the churners or non-churner.Furthermore,the hyperparameter optimization of the DCCAE technique occurs utilizing the deer hunting optimization algorithm(DHOA).The experimental evaluation of the O-DCCAEP technique is carried out against an own dataset and the outcomes highlighted the betterment of the presented O-DCCAEP approach on existing approaches. 展开更多
关键词 Churn prediction customer retention deep learning machine learning archimedes optimization algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部