Smart cities make use of a variety of smart technology to improve societies in better ways.Such intelligent technologies,on the other hand,pose sig-nificant concerns in terms of power usage and emission of carbons.The ...Smart cities make use of a variety of smart technology to improve societies in better ways.Such intelligent technologies,on the other hand,pose sig-nificant concerns in terms of power usage and emission of carbons.The suggested study is focused on technological networks for big data-driven systems.With the support of software-defined technologies,a transportation-aided multicast routing system is suggested.By using public transportation as another communication platform in a smart city,network communication is enhanced.The primary objec-tive is to use as little energy as possible while delivering as much data as possible.The Attribute Decision Making with Capacitated Vehicle(CV)Routing Problem(RP)and Half Open Multi-Depot Heterogeneous Vehicle Routing Problem is used in the proposed research.For the optimum network selection,a Multi-Attribute Decision Making(MADM)method is utilized.For the sake of reducing energy usage,the Capacitated Vehicle Routing Problem(CVRP)is employed.To reduce the transportation cost and risk,Half Open Multi-Depot Heterogeneous Vehicle Routing Problem is used.Moreover,a mixed-integer programming approach is used to deal with the problem.To produce Pareto optimal solutions,an intelligent algorithm based on the epsilon constraint approach and genetic algorithm is cre-ated.A scenario of Auckland Transport is being used to validate the concept of offloading the information onto the buses for energy-efficient and delay-tolerant data transfer.Therefore the experiments have demonstrated that the buses may be used effectively to carry out the data by customer requests while using 30%of less energy than the other systems.展开更多
At present,health care applications,government services,and banking applications use big data with cloud storage to process and implement data.Data mobility in cloud environments uses protection protocols and algorith...At present,health care applications,government services,and banking applications use big data with cloud storage to process and implement data.Data mobility in cloud environments uses protection protocols and algorithms to secure sensitive user data.Sometimes,data may have highly sensitive information,lead-ing users to consider using big data and cloud processing regardless of whether they are secured are not.Threats to sensitive data in cloud systems produce high risks,and existing security methods do not provide enough security to sensitive user data in cloud and big data environments.At present,several security solu-tions support cloud systems.Some of them include Hadoop Distributed File Sys-tem(HDFS)baseline Kerberos security,socket layer-based HDFS security,and hybrid security systems,which have time complexity in providing security inter-actions.Thus,mobile data security algorithms are necessary in cloud environ-ments to avoid time risks in providing security.In our study,we propose a data mobility and security(DMoS)algorithm to provide security of data mobility in cloud environments.By analyzing metadata,data are classified as secured and open data based on their importance.Secured data are sensitive user data,whereas open data are open to the public.On the basis of data classification,secured data are applied to the DMoS algorithm to achieve high security in HDFS.The pro-posed approach is compared with the time complexity of three existing algo-rithms,and results are evaluated.展开更多
基金supported by the National Research Foundation of Korea(NRF)Grant funded by the korea government(MSIT)(No.2022H1D8A3038040)and the Soonchunhyang University Research Fund.
文摘Smart cities make use of a variety of smart technology to improve societies in better ways.Such intelligent technologies,on the other hand,pose sig-nificant concerns in terms of power usage and emission of carbons.The suggested study is focused on technological networks for big data-driven systems.With the support of software-defined technologies,a transportation-aided multicast routing system is suggested.By using public transportation as another communication platform in a smart city,network communication is enhanced.The primary objec-tive is to use as little energy as possible while delivering as much data as possible.The Attribute Decision Making with Capacitated Vehicle(CV)Routing Problem(RP)and Half Open Multi-Depot Heterogeneous Vehicle Routing Problem is used in the proposed research.For the optimum network selection,a Multi-Attribute Decision Making(MADM)method is utilized.For the sake of reducing energy usage,the Capacitated Vehicle Routing Problem(CVRP)is employed.To reduce the transportation cost and risk,Half Open Multi-Depot Heterogeneous Vehicle Routing Problem is used.Moreover,a mixed-integer programming approach is used to deal with the problem.To produce Pareto optimal solutions,an intelligent algorithm based on the epsilon constraint approach and genetic algorithm is cre-ated.A scenario of Auckland Transport is being used to validate the concept of offloading the information onto the buses for energy-efficient and delay-tolerant data transfer.Therefore the experiments have demonstrated that the buses may be used effectively to carry out the data by customer requests while using 30%of less energy than the other systems.
文摘At present,health care applications,government services,and banking applications use big data with cloud storage to process and implement data.Data mobility in cloud environments uses protection protocols and algorithms to secure sensitive user data.Sometimes,data may have highly sensitive information,lead-ing users to consider using big data and cloud processing regardless of whether they are secured are not.Threats to sensitive data in cloud systems produce high risks,and existing security methods do not provide enough security to sensitive user data in cloud and big data environments.At present,several security solu-tions support cloud systems.Some of them include Hadoop Distributed File Sys-tem(HDFS)baseline Kerberos security,socket layer-based HDFS security,and hybrid security systems,which have time complexity in providing security inter-actions.Thus,mobile data security algorithms are necessary in cloud environ-ments to avoid time risks in providing security.In our study,we propose a data mobility and security(DMoS)algorithm to provide security of data mobility in cloud environments.By analyzing metadata,data are classified as secured and open data based on their importance.Secured data are sensitive user data,whereas open data are open to the public.On the basis of data classification,secured data are applied to the DMoS algorithm to achieve high security in HDFS.The pro-posed approach is compared with the time complexity of three existing algo-rithms,and results are evaluated.