The present study is devoted to numerical analysis of natural convective heat transfer and fluid flow of alumina-water nanofluid in an inclined wavy-walled cavity under the effect of non-uniform heating. A single-phas...The present study is devoted to numerical analysis of natural convective heat transfer and fluid flow of alumina-water nanofluid in an inclined wavy-walled cavity under the effect of non-uniform heating. A single-phase nanofluid model with experimental correlations for the nanofluid viscosity and thermal conductivity has been included in the mathematical model. The considered governing equations formulated in dimensionless stream function, vorticity, and temperature have been solved by the finite difference method. The cavity inclination angle and irregular walls(wavy and undulation numbers)are very good control parameters for the heat transfer and fluid flow. Nowadays, optimal parameters are necessary for the heat transfer enhancement in different practical applications. The effects of the involved parameters on the streamlines and isotherms as well as on the average Nusselt number and nanofluid flow rate have been analyzed. It has been found that the heat transfer rate and fluid flow rate are non-monotonic functions of the cavity inclination angle and undulation number.展开更多
An analysis is carried out to investigate the steady mixed convection bound- ary layer flow of a water based nanofluid past a vertical semi-infinite flat plate. Using an appropriate similarity transformation, the gove...An analysis is carried out to investigate the steady mixed convection bound- ary layer flow of a water based nanofluid past a vertical semi-infinite flat plate. Using an appropriate similarity transformation, the governing partial differential equations are transformed into the coupled, nonlinear ordinary (similar) differential equations, which are then solved numerically for the Prandtl number Pr = 6.2. The skin friction coeffi- cient, the local Nusselt number, and the velocity and temperature profiles are presented graphically and discussed. Effects of the solid volume fraction φ and the mixed convection parameter λ on the fluid flow and heat transfer characteristics are thoroughly examined. Different from an assisting flow, it is found that the solutions for an opposing flow are non-unique. In order to establish which solution branch is stable and physically realizable in practice, a stability analysis is performed.展开更多
基金supported by the Ministry of Education and Science of the Russian Federation(No.13.6542.2017/6.7)supported from the grant PN-III-P4-ID-PCE-2016-0036,UEFISCDI,Romania
文摘The present study is devoted to numerical analysis of natural convective heat transfer and fluid flow of alumina-water nanofluid in an inclined wavy-walled cavity under the effect of non-uniform heating. A single-phase nanofluid model with experimental correlations for the nanofluid viscosity and thermal conductivity has been included in the mathematical model. The considered governing equations formulated in dimensionless stream function, vorticity, and temperature have been solved by the finite difference method. The cavity inclination angle and irregular walls(wavy and undulation numbers)are very good control parameters for the heat transfer and fluid flow. Nowadays, optimal parameters are necessary for the heat transfer enhancement in different practical applications. The effects of the involved parameters on the streamlines and isotherms as well as on the average Nusselt number and nanofluid flow rate have been analyzed. It has been found that the heat transfer rate and fluid flow rate are non-monotonic functions of the cavity inclination angle and undulation number.
基金Project supported by the grant of the Romanian National Authority for Scientific Research,CNCSUEFISCDI(No.PN-II-RU-TE-2011-3-0013)
文摘An analysis is carried out to investigate the steady mixed convection bound- ary layer flow of a water based nanofluid past a vertical semi-infinite flat plate. Using an appropriate similarity transformation, the governing partial differential equations are transformed into the coupled, nonlinear ordinary (similar) differential equations, which are then solved numerically for the Prandtl number Pr = 6.2. The skin friction coeffi- cient, the local Nusselt number, and the velocity and temperature profiles are presented graphically and discussed. Effects of the solid volume fraction φ and the mixed convection parameter λ on the fluid flow and heat transfer characteristics are thoroughly examined. Different from an assisting flow, it is found that the solutions for an opposing flow are non-unique. In order to establish which solution branch is stable and physically realizable in practice, a stability analysis is performed.