In this paper, the simulation approach and exergy analysis of multi-stage compression high tempera- ture heat pump (HTHP) systems with R1234ze(Z) working fluid are conducted. Both the single-stage and multi-stage ...In this paper, the simulation approach and exergy analysis of multi-stage compression high tempera- ture heat pump (HTHP) systems with R1234ze(Z) working fluid are conducted. Both the single-stage and multi-stage compression cycles are analyzed to compare the system performance with 120℃ pressurized hot water supply based upon waste heat recovery. The exergy destruction ratios of each component for different stage compression systems are compared. The results show that the exergy loss ratios of the compressor are bigger than that of the evaporator and the condenser for the single-stage compres- sion system. The multi-stage compression system has better energy and exergy etticiencies with the increase of compression stage number. Compared with the single- stage compression system, the coefficient of performance (COP) improvements of the two-stage and three-stage compression system are 9.1% and 14.6%, respectively. When the waste heat source temperature is 60℃, the exergy efficiencies increase about 6.9% and 11.8% for the two-stage and three-stage compression system respec- tively.展开更多
文摘In this paper, the simulation approach and exergy analysis of multi-stage compression high tempera- ture heat pump (HTHP) systems with R1234ze(Z) working fluid are conducted. Both the single-stage and multi-stage compression cycles are analyzed to compare the system performance with 120℃ pressurized hot water supply based upon waste heat recovery. The exergy destruction ratios of each component for different stage compression systems are compared. The results show that the exergy loss ratios of the compressor are bigger than that of the evaporator and the condenser for the single-stage compres- sion system. The multi-stage compression system has better energy and exergy etticiencies with the increase of compression stage number. Compared with the single- stage compression system, the coefficient of performance (COP) improvements of the two-stage and three-stage compression system are 9.1% and 14.6%, respectively. When the waste heat source temperature is 60℃, the exergy efficiencies increase about 6.9% and 11.8% for the two-stage and three-stage compression system respec- tively.