This study is aimed at using the Empirical Line Method (ELM) to eliminate atmospheric effects with respect to visible and near infrared bands of advanced spaceborne thermal emission and reflection radiometer (ASTER...This study is aimed at using the Empirical Line Method (ELM) to eliminate atmospheric effects with respect to visible and near infrared bands of advanced spaceborne thermal emission and reflection radiometer (ASTER) and enhanced thematic mapper plus (ETM+) data. Two targets (Amran limestone as light target and quartz-biotite-sericite-graphite schists as dark target), which were widely exposed and easy to identify in the imagery were selected. The accuracy of the atmospheric correction method was evaluated from three targets (vegetation cover, Amran limestone and Akbra shale) of the surface reflectance. Analytical spectral devices (ASD) FieldSpec3 was used to measure the spectra of target samples. ETM+ data were less influenced by the atmospheric effect when compared to ASTER data. Normalized differences vegetation indices (NDVI) displayed good results with reflectance data when compared with digital number (DN) data because it is highly sensitive to ground truth reflectance (GTR). Most of the differences observed before and after calibration of satellite images (ASTER and ETM+) were absorbed in the SWlR region.展开更多
文摘This study is aimed at using the Empirical Line Method (ELM) to eliminate atmospheric effects with respect to visible and near infrared bands of advanced spaceborne thermal emission and reflection radiometer (ASTER) and enhanced thematic mapper plus (ETM+) data. Two targets (Amran limestone as light target and quartz-biotite-sericite-graphite schists as dark target), which were widely exposed and easy to identify in the imagery were selected. The accuracy of the atmospheric correction method was evaluated from three targets (vegetation cover, Amran limestone and Akbra shale) of the surface reflectance. Analytical spectral devices (ASD) FieldSpec3 was used to measure the spectra of target samples. ETM+ data were less influenced by the atmospheric effect when compared to ASTER data. Normalized differences vegetation indices (NDVI) displayed good results with reflectance data when compared with digital number (DN) data because it is highly sensitive to ground truth reflectance (GTR). Most of the differences observed before and after calibration of satellite images (ASTER and ETM+) were absorbed in the SWlR region.