Spectroscopic ellipsometry (SE), photocarrier radiometry (PCR) and photoluminescence (PL) techniques were employed to measure the ultra-shallow junction (USJ) wafers. These USJ wafers were prepared by As+ ion implanta...Spectroscopic ellipsometry (SE), photocarrier radiometry (PCR) and photoluminescence (PL) techniques were employed to measure the ultra-shallow junction (USJ) wafers. These USJ wafers were prepared by As+ ion implantation at energies of 0.5-5 keV, at a dose of 1×1015 As+ /cm 2 and spike annealing. Experimentally the damaged layer of the as-implanted wafer and the recrystallization and activation of the post-annealed wafer were evaluated by SE in the spectral range from 0.27 to 20 m. The PCR amplitude decreased monotonically with the increasing implantation energy. The experimental results also showed that the PCR amplitudes of post-annealed USJ wafers were greatly enhanced, compared to the non-implanted and non-annealed substrate wafer. The PL measurements showed the enhanced PCR signals were attributed to the band-edge emissions of silicon. For explaining the PL enhancement, the electronic transport properties of USJ wafers were extracted via multi-wavelength PCR experiment and fitting. The fitted results showed the decreasing surface recombination velocity and the decreasing diffusion coefficient of the implanted layer contributed to the PCR signal enhancement with the decreasing implantation energy. SE, PCR and PL were proven to be non-destructive metrology tools for characterizing ultra-shallow junctions.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos. 61076090 and 60676058)
文摘Spectroscopic ellipsometry (SE), photocarrier radiometry (PCR) and photoluminescence (PL) techniques were employed to measure the ultra-shallow junction (USJ) wafers. These USJ wafers were prepared by As+ ion implantation at energies of 0.5-5 keV, at a dose of 1×1015 As+ /cm 2 and spike annealing. Experimentally the damaged layer of the as-implanted wafer and the recrystallization and activation of the post-annealed wafer were evaluated by SE in the spectral range from 0.27 to 20 m. The PCR amplitude decreased monotonically with the increasing implantation energy. The experimental results also showed that the PCR amplitudes of post-annealed USJ wafers were greatly enhanced, compared to the non-implanted and non-annealed substrate wafer. The PL measurements showed the enhanced PCR signals were attributed to the band-edge emissions of silicon. For explaining the PL enhancement, the electronic transport properties of USJ wafers were extracted via multi-wavelength PCR experiment and fitting. The fitted results showed the decreasing surface recombination velocity and the decreasing diffusion coefficient of the implanted layer contributed to the PCR signal enhancement with the decreasing implantation energy. SE, PCR and PL were proven to be non-destructive metrology tools for characterizing ultra-shallow junctions.