We study the relaxation limit for the Aw-Rascle system of traffic flow. For this we apply the theory of invariant regions and the compensated compactness method to get global existence of Cauchy problem for a particul...We study the relaxation limit for the Aw-Rascle system of traffic flow. For this we apply the theory of invariant regions and the compensated compactness method to get global existence of Cauchy problem for a particular Aw-Rascle system with source, where the source is the relaxation term, and we show the convergence of this solutions to the equilibrium state.展开更多
We consider the Cauchy problem for a class of nonlinear degenerate parabolic equation with forcing. By using the vanishing viscosity method it is possible to construct a generalized solution. Moreover, this solution i...We consider the Cauchy problem for a class of nonlinear degenerate parabolic equation with forcing. By using the vanishing viscosity method it is possible to construct a generalized solution. Moreover, this solution is a Lipschitz function on the spatial variable and Holder continuous with exponent 1/2 on the temporal variable.展开更多
文摘We study the relaxation limit for the Aw-Rascle system of traffic flow. For this we apply the theory of invariant regions and the compensated compactness method to get global existence of Cauchy problem for a particular Aw-Rascle system with source, where the source is the relaxation term, and we show the convergence of this solutions to the equilibrium state.
文摘We consider the Cauchy problem for a class of nonlinear degenerate parabolic equation with forcing. By using the vanishing viscosity method it is possible to construct a generalized solution. Moreover, this solution is a Lipschitz function on the spatial variable and Holder continuous with exponent 1/2 on the temporal variable.