We experimentally demonstrate ultra-high extinction ratio(ER)optical pulse modulation with an electro-optical modulator(EOM)on thin film lithium niobate(TFLN)and its application for fiber optic distributed acoustic se...We experimentally demonstrate ultra-high extinction ratio(ER)optical pulse modulation with an electro-optical modulator(EOM)on thin film lithium niobate(TFLN)and its application for fiber optic distributed acoustic sensing(DAS).An interface carrier effect leading to a relaxation-tail response of TFLN EOM is discovered,which can be well addressed by a small compensation component following the main driving signal.An ultrahigh ER>50 dB is achieved by canceling out the tailed response during pulse modulation using the EOM based on a cascaded Mach–Zehnder interferometer(MZI)structure.The modulated optical_(√)pulses are then utilized as a probe light for a DAS system,showing a sensitivity up to-62.9 dB·rad∕Hz~2(7 pε/Hz)for 2-km single-mode sensing fiber.Spatial crosstalk suppression of 24.9 dB along the fiber is also obtained when the ER is improved from 20 dB to 50 dB,clearly revealing its importance to the sensing performance.展开更多
Integrated photonics provides a route to both miniaturization of quantum key distribution(QKD)devices and enhancing their performance.A key element for achieving discrete-variable QKD is a singlephoton detector.It is ...Integrated photonics provides a route to both miniaturization of quantum key distribution(QKD)devices and enhancing their performance.A key element for achieving discrete-variable QKD is a singlephoton detector.It is highly desirable to integrate detectors onto a photonic chip to enable the realization of practical and scalable quantum networks.We realize a heterogeneously integrated,superconducting silicon-photonic chip.Harnessing the unique high-speed feature of our optical waveguide-integrated superconducting detector,we perform the first optimal Bell-state measurement(BSM)of time-bin encoded qubits generated from two independent lasers.The optimal BSM enables an increased key rate of measurement-device-independent QKD(MDI-QKD),which is immune to all attacks against the detection system and hence provides the basis for a QKD network with untrusted relays.Together with the timemultiplexed technique,we have enhanced the sifted key rate by almost one order of magnitude.With a 125-MHz clock rate,we obtain a secure key rate of 6.166 kbps over 24.0 dB loss,which is comparable to the state-of-the-art MDI-QKD experimental results with a GHz clock rate.Combined with integrated QKD transmitters,a scalable,chip-based,and cost-effective QKD network should become realizable in the near future.展开更多
We propose and demonstrate a polarization diversity two-dimensional grating coupler based on the lithium niobate on insulator platform, for the first time, to the best of our knowledge. The optimization design, perfor...We propose and demonstrate a polarization diversity two-dimensional grating coupler based on the lithium niobate on insulator platform, for the first time, to the best of our knowledge. The optimization design, performance characteristics,and fabrication tolerance of the two-dimensional grating coupler are thoroughly analyzed utilizing the three-dimensional finite-difference time-domain method. Experimentally,-7.2 d B of coupling efficiency is achieved with 1 d B bandwidth of64 nm. The polarization-dependent loss is about 0.4 d B around 1550 nm. Our work provides new polarization multiplexing approaches for the lithium niobate on insulator platform, paving the way for critical applications such as high-speed polarization multiplexed electro-optical modulators.展开更多
基金Center-initiated Research Project of Zhejiang Laboratory(K2022ME0AL04)National Key Research and Development Program of China(2021ZD0109904)+1 种基金National Natural Science Foundation of China(62105301)Key Research Project of Zhejiang Laboratory(2020ME0AD02)。
文摘We experimentally demonstrate ultra-high extinction ratio(ER)optical pulse modulation with an electro-optical modulator(EOM)on thin film lithium niobate(TFLN)and its application for fiber optic distributed acoustic sensing(DAS).An interface carrier effect leading to a relaxation-tail response of TFLN EOM is discovered,which can be well addressed by a small compensation component following the main driving signal.An ultrahigh ER>50 dB is achieved by canceling out the tailed response during pulse modulation using the EOM based on a cascaded Mach–Zehnder interferometer(MZI)structure.The modulated optical_(√)pulses are then utilized as a probe light for a DAS system,showing a sensitivity up to-62.9 dB·rad∕Hz~2(7 pε/Hz)for 2-km single-mode sensing fiber.Spatial crosstalk suppression of 24.9 dB along the fiber is also obtained when the ER is improved from 20 dB to 50 dB,clearly revealing its importance to the sensing performance.
基金supported by the National Key Research and Development Program of China(Nos.2017YFA0303704,2019YFA0308700,and 2017YFA0304002)the National Natural Science Foundation of China(Nos.11690032,11321063,and 12033002)+2 种基金the NSFC-BRICS(No.61961146001)the Leading-Edge Technology Program of Jiangsu Natural Science Foundation(No.BK20192001)the Fundamental Research Funds for the Central Universities.
文摘Integrated photonics provides a route to both miniaturization of quantum key distribution(QKD)devices and enhancing their performance.A key element for achieving discrete-variable QKD is a singlephoton detector.It is highly desirable to integrate detectors onto a photonic chip to enable the realization of practical and scalable quantum networks.We realize a heterogeneously integrated,superconducting silicon-photonic chip.Harnessing the unique high-speed feature of our optical waveguide-integrated superconducting detector,we perform the first optimal Bell-state measurement(BSM)of time-bin encoded qubits generated from two independent lasers.The optimal BSM enables an increased key rate of measurement-device-independent QKD(MDI-QKD),which is immune to all attacks against the detection system and hence provides the basis for a QKD network with untrusted relays.Together with the timemultiplexed technique,we have enhanced the sifted key rate by almost one order of magnitude.With a 125-MHz clock rate,we obtain a secure key rate of 6.166 kbps over 24.0 dB loss,which is comparable to the state-of-the-art MDI-QKD experimental results with a GHz clock rate.Combined with integrated QKD transmitters,a scalable,chip-based,and cost-effective QKD network should become realizable in the near future.
基金supported in part by the National Key R&D Program of China(Nos.2019YFB1803900 and 2019YFA0705000)the National Natural Science Foundation of China(Nos.11690031,11761131001,and 11904061)+6 种基金the Key R&D Program of Guangdong Province(No.2018B030329001)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(No.2017BT01X121)the Project of Key Laboratory of Radar Imaging and Microwave Photonics,Ministry of Education(No.RIMP2019003)the Innovation Fund of WNLO(No.2018WNLOKF010),the Guangzhou Science and Technology Program(No.201707010096)the Guangxi Youth and Middle Aged Ability Promotion Project(No.2019KY0126)the BaGui Scholar Programof Guangxi Province(No.02304002022C)the China Postdoctoral Science Foundation(No.2020M673554XB).
文摘We propose and demonstrate a polarization diversity two-dimensional grating coupler based on the lithium niobate on insulator platform, for the first time, to the best of our knowledge. The optimization design, performance characteristics,and fabrication tolerance of the two-dimensional grating coupler are thoroughly analyzed utilizing the three-dimensional finite-difference time-domain method. Experimentally,-7.2 d B of coupling efficiency is achieved with 1 d B bandwidth of64 nm. The polarization-dependent loss is about 0.4 d B around 1550 nm. Our work provides new polarization multiplexing approaches for the lithium niobate on insulator platform, paving the way for critical applications such as high-speed polarization multiplexed electro-optical modulators.