A Monte Carlo Analysis of nodes deployment for large-scale and non-homogeneous wireless sensor networks, has been done. Through simulations of random deployments of nodes over a square area using different densities, ...A Monte Carlo Analysis of nodes deployment for large-scale and non-homogeneous wireless sensor networks, has been done. Through simulations of random deployments of nodes over a square area using different densities, assuming that our network is composed by Anchor nodes (special sensors with known position) and simple Sensor nodes, the latter are supposed to estimate their own position after being placed within the coverage area with the minimum Anchor nodes needed to 'feed' them with the necessary information. The goal is then to assist decision-makers in selecting among different alternatives to deploy the networks, according to resources features and availability, hence this method provides an estimate value of how many Anchor nodes should be deployed in a given area to trigger the location algorithm in the greatest possible number of Sensor nodes in the network.展开更多
文摘A Monte Carlo Analysis of nodes deployment for large-scale and non-homogeneous wireless sensor networks, has been done. Through simulations of random deployments of nodes over a square area using different densities, assuming that our network is composed by Anchor nodes (special sensors with known position) and simple Sensor nodes, the latter are supposed to estimate their own position after being placed within the coverage area with the minimum Anchor nodes needed to 'feed' them with the necessary information. The goal is then to assist decision-makers in selecting among different alternatives to deploy the networks, according to resources features and availability, hence this method provides an estimate value of how many Anchor nodes should be deployed in a given area to trigger the location algorithm in the greatest possible number of Sensor nodes in the network.