In order to achieve a rapid and accurate identification of soil stratification information and accelerate the development of smart agriculture,this paper conducted soil stratification experiments on agricultural soils...In order to achieve a rapid and accurate identification of soil stratification information and accelerate the development of smart agriculture,this paper conducted soil stratification experiments on agricultural soils in the Mollisols area of Northeast China using Ground Penetrating Radar(GPR)and obtained different types of soil with frequencies of 500 MHz,250 MHz,and 100 MHz antennas.The soil profile data were obtained for 500 MHz,250 MHz,and 100 MHz antennas,and the dielectric properties of each type of soil were analyzed.In the image processing procedure,wavelet analysis was first used to decompose the pre-processed radar signal and reconstruct the high-frequency information to obtain the reconstructed signal containing the stratification information.Secondly,the reconstructed signal is taken as an envelope to enhance the stratification information.The Hilbert transform is applied to the envelope signal to find the time-domain variation of the instantaneous frequency and determine the time-domain location of the stratification.Finally,the dielectric constant of each soil horizon is used to obtain the propagation velocity of the electromagnetic wave at the corresponding position to obtain the stratification position of each soil horizon.The research results show that the 500 MHz radar antenna can accurately delineate Ap/Ah,horizon and the absolute accuracy of the stratification is within 5 cm.The effect on the soil stratification below the tillage horizon is not apparent,and the absolute accuracy of the 250 MHz and 100 MHz radar antennas on the stratification is within 9 cm.The overwhelming majority of the overall calculation errors are kept to within 15%.Based on the three central frequency antennas,the soil horizon detection rate reaches 93.3%,which can achieve accurate stratification of soil profiles within 1 m.The experimental and image processing methods used are practical and feasible;however,the GPR will show a missed detection for soil horizons with only slight differences in dielectric properties.Overall,this study can quickly and accurately determine the information of each soil stratification,ultimately providing technical support for acquiring soil configuration information and developing smart agriculture.展开更多
Induced pluripotent stem (iPS) cell technology demonstrates that somatic cells can be reprogrammed to a pluripotent state by over-expressing four reprogramming factors.This technology has created an interest in derivi...Induced pluripotent stem (iPS) cell technology demonstrates that somatic cells can be reprogrammed to a pluripotent state by over-expressing four reprogramming factors.This technology has created an interest in deriving iPS cells from domesticated animals such as pigs,sheep and cattle.Moloney murine leukemia retrovirus vectors have been widely used to generate and study mouse iPS cells.However,this retrovirus system infects only mouse and rat cells,which limits its use in establishing iPS cells from other mammals.In our study,we demonstrate a novel retrovirus strategy to efficiently generate porcine iPS cells from embryonic fibroblasts.We transfected four human reprogramming factors (Oct4,Sox2,Klf4 and Myc) into fibroblasts in one step by using a VSV-G envelope-coated pantropic retrovirus that was easily packaged by GP2-293 cells.We established six embryonic stem (ES)-like cell lines in human ES cell medium supplemented with bFGF.Colonies showed a similar morphology to human ES cells with a high nuclei-cytoplasm ratio and phase-bright flat colonies.Porcine iPS cells could form embryoid bodies in vitro and differentiate into the three germ layers in vivo by forming teratomas in immunodeficient mice.展开更多
Telomeres are composed of TTAGGG repeats and located at the ends of chromosomes. Telomeres protect chromosomes from instability in mammals, including mice and humans. Repetitive TTAGGG sequences are also found at intr...Telomeres are composed of TTAGGG repeats and located at the ends of chromosomes. Telomeres protect chromosomes from instability in mammals, including mice and humans. Repetitive TTAGGG sequences are also found at intrachromosomal sites, where they are named as interstitial telomeric sequences (ITSs). Aberrant ITSs are implicated in chromosomal instability and found in cancer cells. Interestingly, in pigs, vertebrate telomere sequences TTAGGG (vlTSs) are also localized at the centro- meric region of chromosome 6, in addition to the end of all chromosomes. Surprisingly, we found that botanic telomere se- quences, TTTAGGG (bITSs), also localize with vITSs at the centromeric regions of pig chromosome 6 using telomere fluo- rescence in situ hybridization (FISH) and by comparisons between several species. Furthermore, the average lengths of vITSs are highly correlated with those of the terminal telomeres (TTS). Also, pig ITSs show a high incidence of telomere doublets, suggesting that pig ITSs might be unstable and dynamic. Together, our results show that pig cells maintain the conserved te- lomere sequences that are found at the ITSs from of plants and other vertebrates. Further understanding of the function and regulation of pig ITSs may provide new clues for evolution and chromosomal instability.展开更多
基金Under the auspices of the National Key R&D Program of China(No.2021YFD1500100)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA28100000)。
文摘In order to achieve a rapid and accurate identification of soil stratification information and accelerate the development of smart agriculture,this paper conducted soil stratification experiments on agricultural soils in the Mollisols area of Northeast China using Ground Penetrating Radar(GPR)and obtained different types of soil with frequencies of 500 MHz,250 MHz,and 100 MHz antennas.The soil profile data were obtained for 500 MHz,250 MHz,and 100 MHz antennas,and the dielectric properties of each type of soil were analyzed.In the image processing procedure,wavelet analysis was first used to decompose the pre-processed radar signal and reconstruct the high-frequency information to obtain the reconstructed signal containing the stratification information.Secondly,the reconstructed signal is taken as an envelope to enhance the stratification information.The Hilbert transform is applied to the envelope signal to find the time-domain variation of the instantaneous frequency and determine the time-domain location of the stratification.Finally,the dielectric constant of each soil horizon is used to obtain the propagation velocity of the electromagnetic wave at the corresponding position to obtain the stratification position of each soil horizon.The research results show that the 500 MHz radar antenna can accurately delineate Ap/Ah,horizon and the absolute accuracy of the stratification is within 5 cm.The effect on the soil stratification below the tillage horizon is not apparent,and the absolute accuracy of the 250 MHz and 100 MHz radar antennas on the stratification is within 9 cm.The overwhelming majority of the overall calculation errors are kept to within 15%.Based on the three central frequency antennas,the soil horizon detection rate reaches 93.3%,which can achieve accurate stratification of soil profiles within 1 m.The experimental and image processing methods used are practical and feasible;however,the GPR will show a missed detection for soil horizons with only slight differences in dielectric properties.Overall,this study can quickly and accurately determine the information of each soil stratification,ultimately providing technical support for acquiring soil configuration information and developing smart agriculture.
基金supported by the National Basic Research Program of China (Grant Nos. 2009CB941003, 2011CBA0110 and 2011CBA01000)
文摘Induced pluripotent stem (iPS) cell technology demonstrates that somatic cells can be reprogrammed to a pluripotent state by over-expressing four reprogramming factors.This technology has created an interest in deriving iPS cells from domesticated animals such as pigs,sheep and cattle.Moloney murine leukemia retrovirus vectors have been widely used to generate and study mouse iPS cells.However,this retrovirus system infects only mouse and rat cells,which limits its use in establishing iPS cells from other mammals.In our study,we demonstrate a novel retrovirus strategy to efficiently generate porcine iPS cells from embryonic fibroblasts.We transfected four human reprogramming factors (Oct4,Sox2,Klf4 and Myc) into fibroblasts in one step by using a VSV-G envelope-coated pantropic retrovirus that was easily packaged by GP2-293 cells.We established six embryonic stem (ES)-like cell lines in human ES cell medium supplemented with bFGF.Colonies showed a similar morphology to human ES cells with a high nuclei-cytoplasm ratio and phase-bright flat colonies.Porcine iPS cells could form embryoid bodies in vitro and differentiate into the three germ layers in vivo by forming teratomas in immunodeficient mice.
基金supported by the National Basic Research Program of China(Grant Nos. 2009CB941000 and 2011CBA01002)
文摘Telomeres are composed of TTAGGG repeats and located at the ends of chromosomes. Telomeres protect chromosomes from instability in mammals, including mice and humans. Repetitive TTAGGG sequences are also found at intrachromosomal sites, where they are named as interstitial telomeric sequences (ITSs). Aberrant ITSs are implicated in chromosomal instability and found in cancer cells. Interestingly, in pigs, vertebrate telomere sequences TTAGGG (vlTSs) are also localized at the centro- meric region of chromosome 6, in addition to the end of all chromosomes. Surprisingly, we found that botanic telomere se- quences, TTTAGGG (bITSs), also localize with vITSs at the centromeric regions of pig chromosome 6 using telomere fluo- rescence in situ hybridization (FISH) and by comparisons between several species. Furthermore, the average lengths of vITSs are highly correlated with those of the terminal telomeres (TTS). Also, pig ITSs show a high incidence of telomere doublets, suggesting that pig ITSs might be unstable and dynamic. Together, our results show that pig cells maintain the conserved te- lomere sequences that are found at the ITSs from of plants and other vertebrates. Further understanding of the function and regulation of pig ITSs may provide new clues for evolution and chromosomal instability.