[Objectives]To study the effect and mechanism of baicalin on the activation of NLRP3 inflammasome in human fibroblast like synoviocytes of rheumatoid arthritis(HFLS-RA).[Methods]To confirm that baicalin alleviated the...[Objectives]To study the effect and mechanism of baicalin on the activation of NLRP3 inflammasome in human fibroblast like synoviocytes of rheumatoid arthritis(HFLS-RA).[Methods]To confirm that baicalin alleviated the activation of NLRP3 inflammasome in HFLS-RA,the expression of NLRP3 before and after baicalin treatment was observed by immunofluorescence.Western blot was used to detect the protein expression of p-PI3K,p-Akt,NF-κB p65,NLRP3,ASC and caspase-1 after baicalin treatment for 48 h,and the contents of IL-1 and IL-18 in the supernatents were detected by ELISA.In order to explore the mechanism of baicalin alleviating the activation of NLRP3 inflammasome,the corresponding relationship between let-7i-3p and PIK3CA was verified by double luciferin and Westen blot analysis.The expression of let-7i-3p and PI3K before and after baicalin intervention was detected by RT-qPCR.let-7i-3p interference was used to verify whether baicalin mitigated the activation of enhanced NLRP3 inflammasome.[Results]Baicalin(50 and 100 mg/L)significantly reduced the activation of NLRP3 inflammasome,inhibited the protein expressions of p-PI3K,p-Akt,NF-κB p65,NLRP3,ASC and caspase-1,and the secretion of IL-1 and IL-18.let-7i-3p and PIK3CA had a targeted correspondence,and baicalin up-regulated the expression of let-7i-3p and down-regulated the expression of PIK3CA.Baicalin attenuated the activation of NLRP3 inflammasome enhanced by let-7i-3p interference.[Conclusions]Baicalin can up-regulate let-7i-3p expression,inhibit PI3K/Akt/NF-κB signal transduction,and thus reduce the activation of NLRP3 inflammasome in HFLS-RA.展开更多
Bacterial infections are a growing global public health problem,exacerbated by the widespread and often inappropriate use of antibiotics,leading to the emergence of non-antibiotic pathogens.Herein,we synthesized a chi...Bacterial infections are a growing global public health problem,exacerbated by the widespread and often inappropriate use of antibiotics,leading to the emergence of non-antibiotic pathogens.Herein,we synthesized a chitosan-Prussian blue nanozyme(CS@PB),a non-antibiotic agent,for universal antibacterial and antiinflammatory treatment of bacterial infections.Confocal microscopy images showed that CS@PB significantly enhanced the physical interaction between chitosan and bacteria,thereby increasing the antibacterial ability.Moreover,these nanozymes exhibited potent antioxidant and anti-inflammatory properties,promoting macrophage polarization toward the M2-like phenotype,reducing oxidative stress,and alleviating inflammation.This dual-action approach effectively accelerates the healing of bacteria-infected inflammatory wounds.The synergistic bactericidal and anti-inflammatory properties of CS@PBs inhibited wound infection and promoted the healing of skin infections in a mouse model.In addition,CS@PB displayed remarkable lung retention and potent bactericidal effects,resulting in significantly improved survival rates in mouse models of acute pulmonary bacterial infections.In conclusion,CS@PBs exhibited exceptional bactericidal capabilities,anti-inflammatory properties,and minimal toxicity,suggesting that they are promising candidates for a new generation of non-antibiotic antimicrobial agents for the treatment of bacterial infections.展开更多
With the rapid development of information technology,Building Information Modeling(BIM)technology has gradually occupied an important position in the construction industry.With the introduction of BIM technology,the c...With the rapid development of information technology,Building Information Modeling(BIM)technology has gradually occupied an important position in the construction industry.With the introduction of BIM technology,the cost control of construction projects can be greatly improved[1].The use of this technology can not only reduce the project approval time but also improve the quality of the project.In addition,it can also help the construction personnel to solve the project changes,maintenance costs,insurance rates,and other related issues,so that the operation of the project is more efficient and economical.This paper will discuss the role of BIM technology in depth,and explore the advantages and disadvantages of each link through the research of the project,to provide a reference for the promotion of this new project.By constantly adjusting the application strategy,the goal is to meet the current market demand.展开更多
Parkinson’s disease(PD),a neurodegenerative disease that shows a high incidence in older individuals,is becoming increasingly prevalent.Unfortunately,there is no clinical cure for PD,and novel anti-PD drugs are there...Parkinson’s disease(PD),a neurodegenerative disease that shows a high incidence in older individuals,is becoming increasingly prevalent.Unfortunately,there is no clinical cure for PD,and novel anti-PD drugs are therefore urgently required.However,the selective permeability of the blood–brain barrier(BBB)poses a huge challenge in the development of such drugs.Fortunately,through strategies based on the physiological characteristics of the BBB and other modifications,including enhancement of BBB permeability,nanotechnology can offer a solution to this problem and facilitate drug delivery across the BBB.Although nanomaterials are often used as carriers for PD treatment,their biological activity is ignored.Several studies in recent years have shown that nanomaterials can improve PD symptoms via their own nano-bio effects.In this review,we first summarize the physiological features of the BBB and then discuss the design of appropriate brain-targeted delivery nanoplatforms for PD treatment.Subsequently,we highlight the emerging strategies for crossing the BBB and the development of novel nanomaterials with anti-PD nano-biological effects.Finally,we discuss the current challenges in nanomaterial-based PD treatment and the future trends in this field.Our review emphasizes the clinical value of nanotechnology in PD treatment based on recent patents and could guide researchers working in this area in the future.展开更多
In order to solve the springback problem in sheet metal forming, the trial and error method is a widely used method in the factory, which is time-consuming and costly for its non-direction and non-quantitative. Finite...In order to solve the springback problem in sheet metal forming, the trial and error method is a widely used method in the factory, which is time-consuming and costly for its non-direction and non-quantitative. Finite element simulation is an e ective method to predict the springback of complex shape parts, but its precision is sensitive to the simulation model, particularly material model and boundary conditions. In this paper, the simple iterative method is introduced to establish the iterative compensation algorithm, and the convergence criterion of iterative parameters is put forward. In addition, the new algorithm is applied to the V-free bending and stretch-bending processes, and the convergence of curvature and bending angle is proved theoretically and verified experimentally. At the same time,the iterative compensation experiments for plane bending show that, the new method can predict the next compensaantido tnh ev atlaureg ebta cseurdv oatnu trhe ew sitphri tnhgeb earcrko ro fo fe laecshs ttehsat,n s0 o. 5 th%a ta rteh eo btatraigneet db aefntedri n2 g-3 a nitgelrea tiwoitnhs.t Thhei se rrreosre aorf clhe sps rtohpaons e±s 0 a.1%new iterative compensation algorithm to predict springback in sheet metal forming process, where each compensation value depends only on the iteration parameter di erence before and after springback for the same forming process of same material.展开更多
Edge-computing-enabled smart greenhouses are a representative application of the Internet of Things(IoT)technology,which can monitor the environmental information in real-time and employ the information to contribute ...Edge-computing-enabled smart greenhouses are a representative application of the Internet of Things(IoT)technology,which can monitor the environmental information in real-time and employ the information to contribute to intelligent decision-making.In the process,anomaly detection for wireless sensor data plays an important role.However,the traditional anomaly detection algorithms originally designed for anomaly detection in static data do not properly consider the inherent characteristics of the data stream produced by wireless sensors such as infiniteness,correlations,and concept drift,which may pose a considerable challenge to anomaly detection based on data stream and lead to low detection accuracy and efficiency.First,the data stream is usually generated quickly,which means that the data stream is infinite and enormous.Hence,any traditional off-line anomaly detection algorithm that attempts to store the whole dataset or to scan the dataset multiple times for anomaly detection will run out of memory space.Second,there exist correlations among different data streams,and traditional algorithms hardly consider these correlations.Third,the underlying data generation process or distribution may change over time.Thus,traditional anomaly detection algorithms with no model update will lose their effects.Considering these issues,a novel method(called DLSHiForest)based on Locality-Sensitive Hashing and the time window technique is proposed to solve these problems while achieving accurate and efficient detection.Comprehensive experiments are executed using a real-world agricultural greenhouse dataset to demonstrate the feasibility of our approach.Experimental results show that our proposal is practical for addressing the challenges of traditional anomaly detection while ensuring accuracy and efficiency.展开更多
The demand for autonomous motion control of unmanned aerial vehicles in air combat is boosted as taking the initiative in combat appears more and more crucial.Unmanned aerial vehicles inability to manoeuvre autonomous...The demand for autonomous motion control of unmanned aerial vehicles in air combat is boosted as taking the initiative in combat appears more and more crucial.Unmanned aerial vehicles inability to manoeuvre autonomously during air combat that features highly dynamic and uncertain manoeuvres of the enemy;however,limits their combat capabilities,which proves to be very challenging.To meet the challenge,this article proposes an autonomous manoeuvre decision model using an expert actor-based soft actor critic algorithm that reconstructs empirical replay buffer with expert experience.Specifically,the algorithm uses a small amount of expert experience to increase the diversity of the samples,which can largely improve the exploration and utilisation efficiency of deep reinforcement learning.And to simulate the complex battlefield environment,a one-toone air combat model is established and the concept of missile's attack region is introduced.The model enables the one-to-one air combat to be simulated under different initial battlefield situations.Simulation results show that the expert actor-based soft actor critic algorithm can find the most favourable policy for unmanned aerial vehicles to defeat the opponent faster,and converge more quickly,compared with the soft actor critic algorithm.展开更多
BACKGROUND Signet-ring cell carcinoma(SRCC)was previously thought to have a worse prognosis than other differentiated gastric cancer(GC),however,recent studies have shown that the prognosis of SRCC is related to patho...BACKGROUND Signet-ring cell carcinoma(SRCC)was previously thought to have a worse prognosis than other differentiated gastric cancer(GC),however,recent studies have shown that the prognosis of SRCC is related to pathological type.We hypothesize that patients with SRCC and with different SRCC pathological components have different probability of lymph node metastasis(LNM).AIM To establish models to predict LNM in early GC(EGC),including early gastric SRCC.METHODS Clinical data from EGC patients who had undergone gastrectomy at the First Affiliated Hospital of Nanjing Medical University from January 2012 to March 2022 were reviewed.The patients were divided into three groups based on type:Pure SRCC,mixed SRCC,and non-signet ring cell carcinoma(NSRC).The risk factors were identified through statistical tests using SPSS 23.0,R,and EmpowerStats software.RESULTS A total of 1922 subjects with EGC were enrolled in this study,and included 249 SRCC patients and 1673 NSRC patients,while 278 of the patients(14.46%)presented with LNM.Multivariable analysis showed that gender,tumor size,depth of invasion,lymphovascular invasion,ulceration,and histological subtype were independent risk factors for LNM in EGC.Establishment and analysis using prediction models of EGC showed that the artificial neural network model was better than the logistic regression model in terms of sensitivity and accuracy(98.0%vs 58.1%,P=0.034;88.4%vs 86.8%,P<0.001,respectively).Among the 249 SRCC patients,LNM was more common in mixed(35.06%)rather than in pure SRCC(8.42%,P<0.001).The area under the ROC curve of the logistic regression model for LNM in SRCC was 0.760(95%CI:0.682-0.843),while the area under the operating characteristic curve of the internal validation set was 0.734(95%CI:0.643-0.826).The subgroups analysis of pure types showed that LNM was more common in patients with a tumor size>2 cm(OR=5.422,P=0.038).CONCLUSION A validated prediction model was developed to recognize the risk of LNM in EGC and early gastric SRCC,which can aid in pre-surgical decision making of the best method of treatment for patients.展开更多
This article proposes a novel method for maintaining the trajectory of an aerial manipulator by utilizing a fast nonsingular terminal sliding mode(FNTSM)manifold and a linear extended state observer(LESO).The develope...This article proposes a novel method for maintaining the trajectory of an aerial manipulator by utilizing a fast nonsingular terminal sliding mode(FNTSM)manifold and a linear extended state observer(LESO).The developed controlmethod applies an FNTSMto ensure the tracking performance’s control accuracy,and an LESO to estimate the system’s unmodeled dynamics and external disturbances.Additionally,an improved salp swarm algorithm(ISSA)is employed to parameter tune the suggested controller by integrating the salp swarmtechnique with a cloud model.This approach also uses a model-free scheme to reduce the complexity of controller design without relying on complex and precise dynamics models.The simulation results show that the proposed controller outperforms linear active rejection disturbance control and PID controllers in terms of transient performance and resilience against lumped disturbances,and the ISSA can help the proposed controller find optimal control parameters.展开更多
With the increasing demand for interactive aerial operations,the application of aerial manipulators is becoming more promising.However,there are a few critical problems on how to improve the energetic efficiency and p...With the increasing demand for interactive aerial operations,the application of aerial manipulators is becoming more promising.However,there are a few critical problems on how to improve the energetic efficiency and pose control of the aerialmanipulator forpractical application.In this paper,a novel cable-drivenaerialmanipulatorused for remote water sampling is proposed and then its rigid-flexible coupling dynamics model is constructed which takes joint flexibility into account.To achieve high precision joint position tracking under lumped disturbances,a newly controller,which consists of three parts:linear extended state observer,adaptive super-twisting strategy,and fractional-order nonsingular terminal sliding mode control,is proposed.The linear extended state observer is adopted to approximate unmeasured states and unknown lumped disturbances and achieve model-free control structure.The adaptive super-twisting strategy and fractional-order nonsingular terminal sliding mode control are combined together to achieve good control performance and counteract chattering problem.The Lyapunovmethod is utilized to prove the overall stability and convergence of the system.Lastly,various visualization simulations and ground experiments are conducted,verifying the effectiveness of our strategy,and all outcomes demonstrate its superiorities over the existing control strategies.展开更多
Sports matches are very popular all over the world.The prediction of a sports match is helpful to grasp the team's state in time and adjust the strategy in the process of the match.It's a challenging effort to...Sports matches are very popular all over the world.The prediction of a sports match is helpful to grasp the team's state in time and adjust the strategy in the process of the match.It's a challenging effort to predict a sports match.Therefore,a method is proposed to predict the result of the next match by using teams'historical match data.We combined the Long Short-Term Memory(LSTM)model with the attention mechanism and put forward an ASLSTM model for predicting match results.Furthermore,to ensure the timeliness of the prediction,we add the time sliding window to make the prediction have better timeliness.Taking the football match as an example,we carried out a case study and proposed the feasibility of this method.展开更多
Machine learning is a novel and powerful technology and has been widely used in various science topics.We demonstrate a machine-learning-based approach built by a set of general metrics and rules inspired by physics.T...Machine learning is a novel and powerful technology and has been widely used in various science topics.We demonstrate a machine-learning-based approach built by a set of general metrics and rules inspired by physics.Taking advantages of physical constraints,such as dimension identity,symmetry and generalization,we succeed to approach the Gell-Mann-Okubo formula using a technique of symbolic regression.This approach can effectively find explicit solutions among user-defined observables,and can be extensively applied to studying exotic hadron spectrum.展开更多
Hair cell regeneration is the fundamental method of correcting hearing loss and balance disorders caused by hair cell damage or loss. How to promote hair cell regeneration is a hot focus in current research. In mammal...Hair cell regeneration is the fundamental method of correcting hearing loss and balance disorders caused by hair cell damage or loss. How to promote hair cell regeneration is a hot focus in current research. In mammals, cochlear hair cells cannot be regenerated and few vestibular hair cells can be renewed through spontaneous regeneration. However, Math1 gene transfer allows a few inner ear cells to be transformed into hair cells in vitro or in vivo. Hair cells can be renewed through two possible means in birds: supporting cell differentiation and transdifferentiation with or without cell division. Hair cell regeneration is strongly associated with cell proliferation. Therefore, this study explored the relationship between Math1-induced vestibular hair cell regeneration and cell division in mammals. The mouse vestibule was isolated to harvest vestibular epithelial cells. Ad-Math1-enhanced green fluorescent protein (EGFP) was used to track cell division during hair cell transformation.5-Bromo-2′-deoxyuridine (BrdU) was added to track cell proliferation at various time points. Immunocytochemistry was utilized to determine cell differentiation and proliferation. Results demonstrated that when epithelial cells were in a higher proliferative stage, more of these cells differentiated into hair cells by Math1 gene transfer. However, in the low proliferation stage, no BrdU-positive cells were seen after Math1 gene transfer. Cell division always occurred before Math1 transfection but not during or after Math1 transfection, when cells were labeled with BrdU before and after Ad-Math1-EGFP transfection. These results confirm that vestibular epithelial cells with high proliferative potential can differentiate into new hair cells by Math1 gene transfer, but this process is independent of cell proliferation.展开更多
BACKGROUND Venous thrombosis(VT) is one of the minor complications of pacemaker lead extraction. It is often found due to the swelling of the limbs after the extraction. It is easy to be neglected or even misdiagnosed...BACKGROUND Venous thrombosis(VT) is one of the minor complications of pacemaker lead extraction. It is often found due to the swelling of the limbs after the extraction. It is easy to be neglected or even misdiagnosed in the absence of typical clinical symptoms. The incidence, risk factors, and long-term impact of this complication are still unclear. Herein, we report a case of deep VT caused by transvenous lead extraction, which is easily misdiagnosed.CASE SUMMARY A 66-year-old woman underwent a pacemaker lead extraction at our hospital because of a pacemaker pocket infection. After the extraction, she began to experience intermittent fever accompanied by sweating. The highest body temperature recorded was 37.9℃. Additionally, she reported migratory pain that made her uncomfortable. The pain was mistakenly thought to be caused by operation trauma. At first, the pain radiated from the left chest to the mandible.Then, the pain in the left chest was alleviated, but pain in the left neck and throat appeared. Finally, the pain was confined to the mandible and a submandibular mass was palpated with no other abnormalities upon physical examination.Computed tomography venography and angiography finally indicated that the fever and pain were the symptoms of thrombophlebitis caused by lead extraction.The patient was then treated with rivaroxaban for more than three months and has shown no symptoms since she left the hospital.CONCLUSION The possibility of thrombosis should be considered when pain and recurrent fever occur after pacemaker lead extraction.展开更多
The precise estimation of the frequency of the signal is of great significance in the Radar system, the electronic warfare system and many other systems. In this paper, we propose a development and verification platfo...The precise estimation of the frequency of the signal is of great significance in the Radar system, the electronic warfare system and many other systems. In this paper, we propose a development and verification platform for the frequency estimation system in the Matlab and Simulink environment. Its open-extensibility architecture enables the performance evaluation of different frequency estimation algorithms and its graphic interface can greatly promote the system design, simulation and verification efficiency.展开更多
Based on the meteorological data of Langzhong from 1981 to 2016,a comprehensive comfort index model of tourism climate suitable for Langzhong is established by calculating the meteorological and climatic factors affec...Based on the meteorological data of Langzhong from 1981 to 2016,a comprehensive comfort index model of tourism climate suitable for Langzhong is established by calculating the meteorological and climatic factors affecting tourism in the ancient city of Langzhong.The model is used to evaluate the climate comprehensive comfort of Langzhong,and its grades and suitable tourism periods are divided.Based on the monthly index of passenger flow volume in the ancient city of Langzhong from 2013 to 2015,a mathematical model is established through OLS regression analysis to analyze the correlation between changes in monthly passenger flow volume in a year and the comprehensive comfort of tourism climate in the ancient city of Langzhong.The results show that the climate in Langzhong is suitable for tourism in spring and autumn.It is suitable for tourism from February to June and from September to December,of which it is most suitable for tourism from April to May and from September to October.It is less suitable for tourism in only January and from July to August,and there is no unsuitable period.The changes in monthly passenger flow volume in a year are mainly affected by the meteorology and climate.The changes of climate comprehensive comfort in various month have an extremely significant impact on passenger flow volume.The elastic coefficient of impact of climate comprehensive comfort index on the monthly index of passenger flow volume is 0.9614%.展开更多
Against the backdrop of the global COVID-19 pandemic,the teaching and management of clinical medical interns have been facing tremendous challenges.When interns majoring in clinical medicine enter the internship posit...Against the backdrop of the global COVID-19 pandemic,the teaching and management of clinical medical interns have been facing tremendous challenges.When interns majoring in clinical medicine enter the internship position,they lack self-protection awareness and have limited ability to respond to unexpected public health events.This article explores the cognitive situation,existing problems,and improvement measures of clinical medical interns in the post-epidemic era.Therefore,this article proposes a series of improvement measures,including strengthening epidemic training and education for interns,enhancing personal protective awareness,and lastly achieving the role transition from intern to doctor.展开更多
Quantum key distribution(QKD),rooted in quantum mechanics,offers information-theoretic security.However,practi-cal systems open security threats due to imperfections,notably bright-light blinding attacks targeting sin...Quantum key distribution(QKD),rooted in quantum mechanics,offers information-theoretic security.However,practi-cal systems open security threats due to imperfections,notably bright-light blinding attacks targeting single-photon detectors.Here,we propose a concise,robust defense strategy for protecting single-photon detectors in QKD systems against blinding attacks.Our strategy uses a dual approach:detecting the bias current of the avalanche photodiode(APD)to defend against con-tinuous-wave blinding attacks,and monitoring the avalanche amplitude to protect against pulsed blinding attacks.By integrat-ing these two branches,the proposed solution effectively identifies and mitigates a wide range of bright light injection attempts,significantly enhancing the resilience of QKD systems against various bright-light blinding attacks.This method forti-fies the safeguards of quantum communications and offers a crucial contribution to the field of quantum information security.展开更多
Human disturbances are considered to break reproduction barriers among species.Significant increases in hybridization events have been reported among a large number of taxonomic groups in anthropogenic environments,pr...Human disturbances are considered to break reproduction barriers among species.Significant increases in hybridization events have been reported among a large number of taxonomic groups in anthropogenic environments,providing novel insights into species evolution mechanisms and conservation management in the Anthropocene.The Eastern Golden Frog(Pelophylax plancyi)and BlackSpotted Frog(P.nigromaculatus)are two sympatric anuran species with a long history of mitochondrial genome introgression in highly urbanized continental East Asia.However,there is only limited understanding of the pattern of their contemporary hybridization and factors influencing their interspecific relationship under anthropogenic disturbances.Here,interspecific hybridization between P.plancyi and P.nigromaculatus at the population level was investigated in Shanghai.All except two haplotypes obtained from both species in Shanghai were mixed together,and located in the introgression clade,implying multiple ancient mitochondrial introgression events occurred in the populations of our study area.Asymmetric genetic introgression was detected by microsatellite markers,with 0.7%of P.plancyi and 14.6%of P.nigromaculatus identified as contemporary admixed individuals.Consistent with the trend of population density,higher genetic diversity of neutral microsatellite loci was found in the more abundant P.plancyi;however,variation in mitochondrial(Cyt-b)and nuclear(POMC)genes was higher in relatively rare P.nigromaculatus.The population density of P.plancyi and number of water patches within local habitats were significantly positively correlated with both occurrences and proportions of admixed individuals in the populations of P.plancyi and P.nigromaculatus.Considering the prevalent transformation of habitats in urbanized areas,these results imply that a high population density in isolated artificially altered habitats is likely to increase interspecific hybridization.Thus,population monitoring and improvement of landscape connectivity between habitats would be needed to control the intensity of interspecific hybridization between P.plancyi and P.nigromaculatus in anthropogenic-disturbed environments.展开更多
基金Supported by the National Natural Science Foundation of China(82360802):the Natural Science Foundation of Ningxia Province,China(2022AAC 03152).
文摘[Objectives]To study the effect and mechanism of baicalin on the activation of NLRP3 inflammasome in human fibroblast like synoviocytes of rheumatoid arthritis(HFLS-RA).[Methods]To confirm that baicalin alleviated the activation of NLRP3 inflammasome in HFLS-RA,the expression of NLRP3 before and after baicalin treatment was observed by immunofluorescence.Western blot was used to detect the protein expression of p-PI3K,p-Akt,NF-κB p65,NLRP3,ASC and caspase-1 after baicalin treatment for 48 h,and the contents of IL-1 and IL-18 in the supernatents were detected by ELISA.In order to explore the mechanism of baicalin alleviating the activation of NLRP3 inflammasome,the corresponding relationship between let-7i-3p and PIK3CA was verified by double luciferin and Westen blot analysis.The expression of let-7i-3p and PI3K before and after baicalin intervention was detected by RT-qPCR.let-7i-3p interference was used to verify whether baicalin mitigated the activation of enhanced NLRP3 inflammasome.[Results]Baicalin(50 and 100 mg/L)significantly reduced the activation of NLRP3 inflammasome,inhibited the protein expressions of p-PI3K,p-Akt,NF-κB p65,NLRP3,ASC and caspase-1,and the secretion of IL-1 and IL-18.let-7i-3p and PIK3CA had a targeted correspondence,and baicalin up-regulated the expression of let-7i-3p and down-regulated the expression of PIK3CA.Baicalin attenuated the activation of NLRP3 inflammasome enhanced by let-7i-3p interference.[Conclusions]Baicalin can up-regulate let-7i-3p expression,inhibit PI3K/Akt/NF-κB signal transduction,and thus reduce the activation of NLRP3 inflammasome in HFLS-RA.
基金supported by the National Key Research and Development Program of China(No.2023YFA0915400,2022YFA1206500,2020YFA0909000)Fundamental Research Funds for the Central Universities(No.2020JCPT02)+2 种基金National Natural Science Foundation of China(No.22277072,22107065)“Clinic Plus”Outstanding Project(no.2023ZYB006,2023ZYB004,2023ZYB003,2023ZYA002)from Shanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineInnovative research team of high-level local universities in Shanghai.
文摘Bacterial infections are a growing global public health problem,exacerbated by the widespread and often inappropriate use of antibiotics,leading to the emergence of non-antibiotic pathogens.Herein,we synthesized a chitosan-Prussian blue nanozyme(CS@PB),a non-antibiotic agent,for universal antibacterial and antiinflammatory treatment of bacterial infections.Confocal microscopy images showed that CS@PB significantly enhanced the physical interaction between chitosan and bacteria,thereby increasing the antibacterial ability.Moreover,these nanozymes exhibited potent antioxidant and anti-inflammatory properties,promoting macrophage polarization toward the M2-like phenotype,reducing oxidative stress,and alleviating inflammation.This dual-action approach effectively accelerates the healing of bacteria-infected inflammatory wounds.The synergistic bactericidal and anti-inflammatory properties of CS@PBs inhibited wound infection and promoted the healing of skin infections in a mouse model.In addition,CS@PB displayed remarkable lung retention and potent bactericidal effects,resulting in significantly improved survival rates in mouse models of acute pulmonary bacterial infections.In conclusion,CS@PBs exhibited exceptional bactericidal capabilities,anti-inflammatory properties,and minimal toxicity,suggesting that they are promising candidates for a new generation of non-antibiotic antimicrobial agents for the treatment of bacterial infections.
文摘With the rapid development of information technology,Building Information Modeling(BIM)technology has gradually occupied an important position in the construction industry.With the introduction of BIM technology,the cost control of construction projects can be greatly improved[1].The use of this technology can not only reduce the project approval time but also improve the quality of the project.In addition,it can also help the construction personnel to solve the project changes,maintenance costs,insurance rates,and other related issues,so that the operation of the project is more efficient and economical.This paper will discuss the role of BIM technology in depth,and explore the advantages and disadvantages of each link through the research of the project,to provide a reference for the promotion of this new project.By constantly adjusting the application strategy,the goal is to meet the current market demand.
基金This work was financially supported through grants from the Guangdong Basic and Applied Basic Research Foundation(2019B1515120043)National Natural Science Foundation of China(File No.82104354)+2 种基金the Science and Technology Development Fund,Macao SAR(File No.0016/2021/A)and the Open Project of Key Laboratory of Modern Preparation of Traditional Chinese Medicine,Ministry of Education,Jiangxi University of Chinese Medicine(zdsys-202101)Open access funding provided by Shanghai Jiao Tong University
文摘Parkinson’s disease(PD),a neurodegenerative disease that shows a high incidence in older individuals,is becoming increasingly prevalent.Unfortunately,there is no clinical cure for PD,and novel anti-PD drugs are therefore urgently required.However,the selective permeability of the blood–brain barrier(BBB)poses a huge challenge in the development of such drugs.Fortunately,through strategies based on the physiological characteristics of the BBB and other modifications,including enhancement of BBB permeability,nanotechnology can offer a solution to this problem and facilitate drug delivery across the BBB.Although nanomaterials are often used as carriers for PD treatment,their biological activity is ignored.Several studies in recent years have shown that nanomaterials can improve PD symptoms via their own nano-bio effects.In this review,we first summarize the physiological features of the BBB and then discuss the design of appropriate brain-targeted delivery nanoplatforms for PD treatment.Subsequently,we highlight the emerging strategies for crossing the BBB and the development of novel nanomaterials with anti-PD nano-biological effects.Finally,we discuss the current challenges in nanomaterial-based PD treatment and the future trends in this field.Our review emphasizes the clinical value of nanotechnology in PD treatment based on recent patents and could guide researchers working in this area in the future.
基金Supported by Hebei Provincial Natural Science Foundation of in China(Grant Nos.E2015203244,E2016203266)Program for the Youth Top-notch Talents of Hebei Province
文摘In order to solve the springback problem in sheet metal forming, the trial and error method is a widely used method in the factory, which is time-consuming and costly for its non-direction and non-quantitative. Finite element simulation is an e ective method to predict the springback of complex shape parts, but its precision is sensitive to the simulation model, particularly material model and boundary conditions. In this paper, the simple iterative method is introduced to establish the iterative compensation algorithm, and the convergence criterion of iterative parameters is put forward. In addition, the new algorithm is applied to the V-free bending and stretch-bending processes, and the convergence of curvature and bending angle is proved theoretically and verified experimentally. At the same time,the iterative compensation experiments for plane bending show that, the new method can predict the next compensaantido tnh ev atlaureg ebta cseurdv oatnu trhe ew sitphri tnhgeb earcrko ro fo fe laecshs ttehsat,n s0 o. 5 th%a ta rteh eo btatraigneet db aefntedri n2 g-3 a nitgelrea tiwoitnhs.t Thhei se rrreosre aorf clhe sps rtohpaons e±s 0 a.1%new iterative compensation algorithm to predict springback in sheet metal forming process, where each compensation value depends only on the iteration parameter di erence before and after springback for the same forming process of same material.
基金supported in part by the Fundamental Research Funds for the Central Universities under Grant No.30919011282.
文摘Edge-computing-enabled smart greenhouses are a representative application of the Internet of Things(IoT)technology,which can monitor the environmental information in real-time and employ the information to contribute to intelligent decision-making.In the process,anomaly detection for wireless sensor data plays an important role.However,the traditional anomaly detection algorithms originally designed for anomaly detection in static data do not properly consider the inherent characteristics of the data stream produced by wireless sensors such as infiniteness,correlations,and concept drift,which may pose a considerable challenge to anomaly detection based on data stream and lead to low detection accuracy and efficiency.First,the data stream is usually generated quickly,which means that the data stream is infinite and enormous.Hence,any traditional off-line anomaly detection algorithm that attempts to store the whole dataset or to scan the dataset multiple times for anomaly detection will run out of memory space.Second,there exist correlations among different data streams,and traditional algorithms hardly consider these correlations.Third,the underlying data generation process or distribution may change over time.Thus,traditional anomaly detection algorithms with no model update will lose their effects.Considering these issues,a novel method(called DLSHiForest)based on Locality-Sensitive Hashing and the time window technique is proposed to solve these problems while achieving accurate and efficient detection.Comprehensive experiments are executed using a real-world agricultural greenhouse dataset to demonstrate the feasibility of our approach.Experimental results show that our proposal is practical for addressing the challenges of traditional anomaly detection while ensuring accuracy and efficiency.
基金acknowledge the National Nature Science Foundation of China(Grant No.62003267)Fundamental Research Funds for the Central Universities(Grant No.G2022KY0602)+1 种基金Technology on Electromagnetic Space Operations and Applications Laboratory(Grant No.2022ZX0090)key core technology research plan of Xi'an(Grant No.21RGZN0016)to provide fund for conducting experiments.
文摘The demand for autonomous motion control of unmanned aerial vehicles in air combat is boosted as taking the initiative in combat appears more and more crucial.Unmanned aerial vehicles inability to manoeuvre autonomously during air combat that features highly dynamic and uncertain manoeuvres of the enemy;however,limits their combat capabilities,which proves to be very challenging.To meet the challenge,this article proposes an autonomous manoeuvre decision model using an expert actor-based soft actor critic algorithm that reconstructs empirical replay buffer with expert experience.Specifically,the algorithm uses a small amount of expert experience to increase the diversity of the samples,which can largely improve the exploration and utilisation efficiency of deep reinforcement learning.And to simulate the complex battlefield environment,a one-toone air combat model is established and the concept of missile's attack region is introduced.The model enables the one-to-one air combat to be simulated under different initial battlefield situations.Simulation results show that the expert actor-based soft actor critic algorithm can find the most favourable policy for unmanned aerial vehicles to defeat the opponent faster,and converge more quickly,compared with the soft actor critic algorithm.
基金National Natural Science Foundation of China,No.82200625 and No.82100595Youth Talent Development Program,No.YNRCQN0313+2 种基金Young Scholar Fostering Fund of the First Affiliated Hospital of Nanjing Medical University,No.PY2021023Top Talent of Changzhou“The 14th Five-Year Plan”High-Level Health Talents Training Project,No.2022CZBJ051Natural Science Foundation of Jiangsu Province,China,No.BK20210958.
文摘BACKGROUND Signet-ring cell carcinoma(SRCC)was previously thought to have a worse prognosis than other differentiated gastric cancer(GC),however,recent studies have shown that the prognosis of SRCC is related to pathological type.We hypothesize that patients with SRCC and with different SRCC pathological components have different probability of lymph node metastasis(LNM).AIM To establish models to predict LNM in early GC(EGC),including early gastric SRCC.METHODS Clinical data from EGC patients who had undergone gastrectomy at the First Affiliated Hospital of Nanjing Medical University from January 2012 to March 2022 were reviewed.The patients were divided into three groups based on type:Pure SRCC,mixed SRCC,and non-signet ring cell carcinoma(NSRC).The risk factors were identified through statistical tests using SPSS 23.0,R,and EmpowerStats software.RESULTS A total of 1922 subjects with EGC were enrolled in this study,and included 249 SRCC patients and 1673 NSRC patients,while 278 of the patients(14.46%)presented with LNM.Multivariable analysis showed that gender,tumor size,depth of invasion,lymphovascular invasion,ulceration,and histological subtype were independent risk factors for LNM in EGC.Establishment and analysis using prediction models of EGC showed that the artificial neural network model was better than the logistic regression model in terms of sensitivity and accuracy(98.0%vs 58.1%,P=0.034;88.4%vs 86.8%,P<0.001,respectively).Among the 249 SRCC patients,LNM was more common in mixed(35.06%)rather than in pure SRCC(8.42%,P<0.001).The area under the ROC curve of the logistic regression model for LNM in SRCC was 0.760(95%CI:0.682-0.843),while the area under the operating characteristic curve of the internal validation set was 0.734(95%CI:0.643-0.826).The subgroups analysis of pure types showed that LNM was more common in patients with a tumor size>2 cm(OR=5.422,P=0.038).CONCLUSION A validated prediction model was developed to recognize the risk of LNM in EGC and early gastric SRCC,which can aid in pre-surgical decision making of the best method of treatment for patients.
基金supported by the National Natural Science Foundation of China(52005231)Social Development Science and Technology Support Project of Changzhou(CE20215050)Jiangsu Province Graduate Student Practice Innovation Plan(SJCX21_1313,SJCX21_1314).
文摘This article proposes a novel method for maintaining the trajectory of an aerial manipulator by utilizing a fast nonsingular terminal sliding mode(FNTSM)manifold and a linear extended state observer(LESO).The developed controlmethod applies an FNTSMto ensure the tracking performance’s control accuracy,and an LESO to estimate the system’s unmodeled dynamics and external disturbances.Additionally,an improved salp swarm algorithm(ISSA)is employed to parameter tune the suggested controller by integrating the salp swarmtechnique with a cloud model.This approach also uses a model-free scheme to reduce the complexity of controller design without relying on complex and precise dynamics models.The simulation results show that the proposed controller outperforms linear active rejection disturbance control and PID controllers in terms of transient performance and resilience against lumped disturbances,and the ISSA can help the proposed controller find optimal control parameters.
基金supported by the National Natural Science Foundation of China (52005231,52175097)Social Development Science and Technology Support Project of Changzhou (CE20215050).
文摘With the increasing demand for interactive aerial operations,the application of aerial manipulators is becoming more promising.However,there are a few critical problems on how to improve the energetic efficiency and pose control of the aerialmanipulator forpractical application.In this paper,a novel cable-drivenaerialmanipulatorused for remote water sampling is proposed and then its rigid-flexible coupling dynamics model is constructed which takes joint flexibility into account.To achieve high precision joint position tracking under lumped disturbances,a newly controller,which consists of three parts:linear extended state observer,adaptive super-twisting strategy,and fractional-order nonsingular terminal sliding mode control,is proposed.The linear extended state observer is adopted to approximate unmeasured states and unknown lumped disturbances and achieve model-free control structure.The adaptive super-twisting strategy and fractional-order nonsingular terminal sliding mode control are combined together to achieve good control performance and counteract chattering problem.The Lyapunovmethod is utilized to prove the overall stability and convergence of the system.Lastly,various visualization simulations and ground experiments are conducted,verifying the effectiveness of our strategy,and all outcomes demonstrate its superiorities over the existing control strategies.
文摘Sports matches are very popular all over the world.The prediction of a sports match is helpful to grasp the team's state in time and adjust the strategy in the process of the match.It's a challenging effort to predict a sports match.Therefore,a method is proposed to predict the result of the next match by using teams'historical match data.We combined the Long Short-Term Memory(LSTM)model with the attention mechanism and put forward an ASLSTM model for predicting match results.Furthermore,to ensure the timeliness of the prediction,we add the time sliding window to make the prediction have better timeliness.Taking the football match as an example,we carried out a case study and proposed the feasibility of this method.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030008)the National Natural Science Foundation of China(Grant No.12035007)+2 种基金the Guangdong Provincial Fund(Grant No.2019QN01X172)supported by the National Natural Science Foundation of China(Grant No.12070131001)the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)through the funds provided to the Sino-German Collaborative Research Center TRR110“Symmetries and the Emergence of Structure in QCD”(Grant No.DFG Project-ID 196253076-TRR 110)。
文摘Machine learning is a novel and powerful technology and has been widely used in various science topics.We demonstrate a machine-learning-based approach built by a set of general metrics and rules inspired by physics.Taking advantages of physical constraints,such as dimension identity,symmetry and generalization,we succeed to approach the Gell-Mann-Okubo formula using a technique of symbolic regression.This approach can effectively find explicit solutions among user-defined observables,and can be extensively applied to studying exotic hadron spectrum.
基金supported by the National Natural Science Foundation of China(NSFC)grant No.81420108010,81271084 to FLC,81370022,81570920,81000413 to DR,81200740 to JMY,81200738 to NC,81371093 to ZH,81400460 to ZG,81200739 to JW+2 种基金973 Program,grant No.2011CB504500 and 2011CB504506The Innovation Project of Shanghai Municipal Science and Technology Commission,grant No.11411952300 to FLCthe Training Program of the Excellent Young Talents of the Shanghai Municipal Health System,grant No.XYQ2013084 to DR
文摘Hair cell regeneration is the fundamental method of correcting hearing loss and balance disorders caused by hair cell damage or loss. How to promote hair cell regeneration is a hot focus in current research. In mammals, cochlear hair cells cannot be regenerated and few vestibular hair cells can be renewed through spontaneous regeneration. However, Math1 gene transfer allows a few inner ear cells to be transformed into hair cells in vitro or in vivo. Hair cells can be renewed through two possible means in birds: supporting cell differentiation and transdifferentiation with or without cell division. Hair cell regeneration is strongly associated with cell proliferation. Therefore, this study explored the relationship between Math1-induced vestibular hair cell regeneration and cell division in mammals. The mouse vestibule was isolated to harvest vestibular epithelial cells. Ad-Math1-enhanced green fluorescent protein (EGFP) was used to track cell division during hair cell transformation.5-Bromo-2′-deoxyuridine (BrdU) was added to track cell proliferation at various time points. Immunocytochemistry was utilized to determine cell differentiation and proliferation. Results demonstrated that when epithelial cells were in a higher proliferative stage, more of these cells differentiated into hair cells by Math1 gene transfer. However, in the low proliferation stage, no BrdU-positive cells were seen after Math1 gene transfer. Cell division always occurred before Math1 transfection but not during or after Math1 transfection, when cells were labeled with BrdU before and after Ad-Math1-EGFP transfection. These results confirm that vestibular epithelial cells with high proliferative potential can differentiate into new hair cells by Math1 gene transfer, but this process is independent of cell proliferation.
基金Supported by Nanjing Foundation for Development of Science and Technology,No.ZKX14018
文摘BACKGROUND Venous thrombosis(VT) is one of the minor complications of pacemaker lead extraction. It is often found due to the swelling of the limbs after the extraction. It is easy to be neglected or even misdiagnosed in the absence of typical clinical symptoms. The incidence, risk factors, and long-term impact of this complication are still unclear. Herein, we report a case of deep VT caused by transvenous lead extraction, which is easily misdiagnosed.CASE SUMMARY A 66-year-old woman underwent a pacemaker lead extraction at our hospital because of a pacemaker pocket infection. After the extraction, she began to experience intermittent fever accompanied by sweating. The highest body temperature recorded was 37.9℃. Additionally, she reported migratory pain that made her uncomfortable. The pain was mistakenly thought to be caused by operation trauma. At first, the pain radiated from the left chest to the mandible.Then, the pain in the left chest was alleviated, but pain in the left neck and throat appeared. Finally, the pain was confined to the mandible and a submandibular mass was palpated with no other abnormalities upon physical examination.Computed tomography venography and angiography finally indicated that the fever and pain were the symptoms of thrombophlebitis caused by lead extraction.The patient was then treated with rivaroxaban for more than three months and has shown no symptoms since she left the hospital.CONCLUSION The possibility of thrombosis should be considered when pain and recurrent fever occur after pacemaker lead extraction.
文摘The precise estimation of the frequency of the signal is of great significance in the Radar system, the electronic warfare system and many other systems. In this paper, we propose a development and verification platform for the frequency estimation system in the Matlab and Simulink environment. Its open-extensibility architecture enables the performance evaluation of different frequency estimation algorithms and its graphic interface can greatly promote the system design, simulation and verification efficiency.
文摘Based on the meteorological data of Langzhong from 1981 to 2016,a comprehensive comfort index model of tourism climate suitable for Langzhong is established by calculating the meteorological and climatic factors affecting tourism in the ancient city of Langzhong.The model is used to evaluate the climate comprehensive comfort of Langzhong,and its grades and suitable tourism periods are divided.Based on the monthly index of passenger flow volume in the ancient city of Langzhong from 2013 to 2015,a mathematical model is established through OLS regression analysis to analyze the correlation between changes in monthly passenger flow volume in a year and the comprehensive comfort of tourism climate in the ancient city of Langzhong.The results show that the climate in Langzhong is suitable for tourism in spring and autumn.It is suitable for tourism from February to June and from September to December,of which it is most suitable for tourism from April to May and from September to October.It is less suitable for tourism in only January and from July to August,and there is no unsuitable period.The changes in monthly passenger flow volume in a year are mainly affected by the meteorology and climate.The changes of climate comprehensive comfort in various month have an extremely significant impact on passenger flow volume.The elastic coefficient of impact of climate comprehensive comfort index on the monthly index of passenger flow volume is 0.9614%.
基金Heilongjiang Province Higher Education Teaching Reform Project Application Form“Research on the Demand for Epidemic Prevention Teaching for Intern Doctors During the New Coronavirus Epidemic”(Project number:SJGY20200756)Key topics of Heilongjiang Province’s“14th Five-Year Plan”for Educational Science in 2023“Research Applying the BOPPPS Teaching Model Based on Job Competency in Practical Endotracheal Intubation Skills”(Project number:GJB1423364)。
文摘Against the backdrop of the global COVID-19 pandemic,the teaching and management of clinical medical interns have been facing tremendous challenges.When interns majoring in clinical medicine enter the internship position,they lack self-protection awareness and have limited ability to respond to unexpected public health events.This article explores the cognitive situation,existing problems,and improvement measures of clinical medical interns in the post-epidemic era.Therefore,this article proposes a series of improvement measures,including strengthening epidemic training and education for interns,enhancing personal protective awareness,and lastly achieving the role transition from intern to doctor.
基金This work was supported by the Major Scientific and Technological Special Project of Anhui Province(202103a13010004)the Major Scientific and Technological Special Project of Hefei City(2021DX007)+1 种基金the Key R&D Plan of Shandong Province(2020CXGC010105)the China Postdoctoral Science Foundation(2021M700315).
文摘Quantum key distribution(QKD),rooted in quantum mechanics,offers information-theoretic security.However,practi-cal systems open security threats due to imperfections,notably bright-light blinding attacks targeting single-photon detectors.Here,we propose a concise,robust defense strategy for protecting single-photon detectors in QKD systems against blinding attacks.Our strategy uses a dual approach:detecting the bias current of the avalanche photodiode(APD)to defend against con-tinuous-wave blinding attacks,and monitoring the avalanche amplitude to protect against pulsed blinding attacks.By integrat-ing these two branches,the proposed solution effectively identifies and mitigates a wide range of bright light injection attempts,significantly enhancing the resilience of QKD systems against various bright-light blinding attacks.This method forti-fies the safeguards of quantum communications and offers a crucial contribution to the field of quantum information security.
基金supported by the National Natural Science Foundation of China(32071529)the Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station(Z202204)+1 种基金Shanghai Key Lab for Urban Ecological Processes and EcoRestoration(SHUES2020B06,SHUES2021C04)the Fundamental Research Funds for the Central Universities.
文摘Human disturbances are considered to break reproduction barriers among species.Significant increases in hybridization events have been reported among a large number of taxonomic groups in anthropogenic environments,providing novel insights into species evolution mechanisms and conservation management in the Anthropocene.The Eastern Golden Frog(Pelophylax plancyi)and BlackSpotted Frog(P.nigromaculatus)are two sympatric anuran species with a long history of mitochondrial genome introgression in highly urbanized continental East Asia.However,there is only limited understanding of the pattern of their contemporary hybridization and factors influencing their interspecific relationship under anthropogenic disturbances.Here,interspecific hybridization between P.plancyi and P.nigromaculatus at the population level was investigated in Shanghai.All except two haplotypes obtained from both species in Shanghai were mixed together,and located in the introgression clade,implying multiple ancient mitochondrial introgression events occurred in the populations of our study area.Asymmetric genetic introgression was detected by microsatellite markers,with 0.7%of P.plancyi and 14.6%of P.nigromaculatus identified as contemporary admixed individuals.Consistent with the trend of population density,higher genetic diversity of neutral microsatellite loci was found in the more abundant P.plancyi;however,variation in mitochondrial(Cyt-b)and nuclear(POMC)genes was higher in relatively rare P.nigromaculatus.The population density of P.plancyi and number of water patches within local habitats were significantly positively correlated with both occurrences and proportions of admixed individuals in the populations of P.plancyi and P.nigromaculatus.Considering the prevalent transformation of habitats in urbanized areas,these results imply that a high population density in isolated artificially altered habitats is likely to increase interspecific hybridization.Thus,population monitoring and improvement of landscape connectivity between habitats would be needed to control the intensity of interspecific hybridization between P.plancyi and P.nigromaculatus in anthropogenic-disturbed environments.