期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Dendritic nanoarchitecture imparts ZSM-5 zeolite with enhanced adsorption and catalytic performance in energy applications 被引量:1
1
作者 María del Mar Alonso-Doncel Cristina Ochoa-Hernández +5 位作者 Gema Gómez-Pozuelo Adriana Oliveira JoséGonzález-Aguilar ángel Peral raúl sanz David P.Serrano 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期77-88,I0003,共13页
The development of zeolites possessing dendritic features represents a great opportunity for the design of novel materials with applications in a large variety of fields and,in particular,in the energy sector to affor... The development of zeolites possessing dendritic features represents a great opportunity for the design of novel materials with applications in a large variety of fields and,in particular,in the energy sector to afford its transition towards a low carbon system.In the current work,ZSM-5 zeolite showing a dendritic3D nanoarchitecture has been synthesized by the functionalization of protozeolitic nanounits with an amphiphilic organosilane,which provokes the branched aggregative growth of zeolite embryos.Dendritic ZSM-5 exhibits outstanding accessibility arising from a highly interconnected network of radially-oriented mesopores(3-10 nm)and large cavities(20-80 nm),which add to the zeolitic micropores,thus showing a well-defined trimodal pore size distribution.These singular features provide dendritic ZSM-5 with sharply enhanced performance in comparison with nano-and hierarchical reference materials when tested in a number of energy related applications,such as VOCs(toluene)adsorption(improved capacity),plastics(low-density polyethylene)catalytic cracking(boosted activity)and hydrogen production by methane catalytic decomposition(higher activity and deactivation resistance). 展开更多
关键词 Dendritic ZSM-5 VOCs adsorption Plastics cracking Methane decomposition Hydrogen production
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部